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Abstract

The cuticle is the major barrier against uncontrolled
water loss from leaves, fruits and other primary
parts of higher plants. More than 100 mean values
for water permeabilities determined with isolated leaf
and fruit cuticles from 61 plant species are compiled
and discussed in relation to plant organ, natural
habitat and morphology. The maximum barrier prop-
erties of plant cuticles exceed that of synthetic
polymeric films of equal thickness. Cuticular water
permeability is not correlated to the thickness of the
cuticle or to wax coverage. Relationships between
cuticular permeability, wax composition and physical
properties of the cuticle are evaluated. Cuticular
permeability to water increases on the average by a
factor of 2 when leaf surface temperature is raised
from 15 8C to 35 8C. Organic compounds of anthro-
pogenic and biogenic origin may enhance cuticular
permeability. The pathway taken by water across
the cuticular transport barrier is reviewed. The con-
clusion from this discussion is that the bulk of water
diffuses as single molecules across a lipophilic
barrier while a minor fraction travels along polar
pores. Open questions concerning the mechanistic
understanding of the plant cuticular transport barrier
and the role the plant cuticle plays in ensuring the
survival and reproductive success of an individual
plant are indicated.
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Introduction

Water is a crucial prerequisite for plant life. Both the
shortage and the excess of water may cause severe stress
to terrestrial plants, with ultimately lethal outcomes.
A suite of physiological, anatomical, morphological, and
life-history adaptations ensures that plants are able to
maintain a water status suitable for survival and repro-
duction even under adverse environmental conditions.
The macrofossil record of terrestrial plant evolution
provides evidence for the critical importance the regula-
tion of plant water status has for life in an atmospheric
environment: well-developed cuticles and stomata turn
up in fossil specimens of the very earliest terrestrial
plants known (Edwards et al., 1996, 1998). Both struc-
tures together make up an integrated system of tissues
and physiological functions optimizing photosynthetic
gas exchange under the inescapable constraint of the
continuous loss of water to a dry atmosphere.

A major challenge for plants living in an atmospheric
environment is, therefore, to develop a barrier against
uncontrolled water loss. The barrier has to be efficient,
translucent for photosynthetically active radiation, flex-
ible, and self-healing. The plant cuticle combines all these
properties in an economic way. The cuticle is a thin
(0.1–10 mm thick) continuous membrane consisting of
a polymer matrix (cutin), polysaccharides and associ-
ated solvent-soluble lipids (cuticular waxes) (Holloway,
1982a; Jeffree, 1996). Cutin is a three-dimensional poly-
mer of mostly C16 and C18 hydroxy fatty acids cross-
linked by ester and other bonds (Kolattukudy, 1980;
Holloway, 1982b; Holloway and Wattendorff, 1987;
Walton, 1990; von Wettstein-Knowles, 1993). Cuticular
waxes is a general term for complex mixtures of homo-
logue series of long chain aliphatics like alkanes, alcohols,
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aldehydes, fatty acids, and esters with the addition of
varying proportions of cyclic compounds like penta-
cyclic triterpenoids and hydroxycinnamic acid derivatives
(Kolattukudy et al., 1976; Tulloch, 1976; Kolattukudy,
1980; Baker, 1982; Holloway, 1984; Walton, 1990; von
Wettstein-Knowles, 1993, 1995; Kolattukudy and Espelie,
1994; Bianchi, 1995; Riederer and Markstädter, 1996).

While some basic properties of plant cuticles as
barriers against the diffusion of water have been elucid-
ated (Schönherr, 1976a, b, 1982; Schönherr et al., 1979;
Becker et al., 1986; Kerstiens, 1996) a number of ques-
tions have been addressed only recently or still remain
open. When it comes to the assessment of the impact of
environmental stress factors on the plant water status
a major question to be addressed concerns the relation-
ship between the chemical and physical properties of
plant cuticles and their transport properties as well as the
variability and plasticity, both intra- and interspecific, of
cuticular water permeability. From a whole-plant point
of view the interplay between stomatal regulation and
cuticular water permeability must be analysed for under-
standing the contribution of the cuticular barrier to the
maintenance of plant water status (Raven, 1977). The
following paragraphs will address these questions by
critically evaluating the current state of knowledge and
by exploring directions for future research.

Water permeability of plant cuticles

Plant cuticles control the movement of water between
two compartments: (1) the outer cell wall of the epi-
dermis and (2) the atmosphere adjacent to the plant.
The mechanism of water transport across the cuticle is
a simple diffusion process along a gradient of the chem-
ical potential of water. As a first approximation, the
cuticle is considered to behave as a solution-diffusion
membrane where the penetrating molecules are sorbed
at one interface, diffuse across the barrier and sub-
sequently are desorbed at the other interface (Frisch,
1991; Vieth, 1991).

Under steady-state conditions, the amount of water
permeated from the leaf tissue to the atmosphere linearly
increases with time, and the flow rate J (g m�2 s�1) is
given by

J ¼PcA(Ci � Co) (1)

where Ci and Co are the vapour-based concentrations of
water (g m�3) in the outer epidermal wall and the
atmosphere, respectively. The error is negligible when Ci

is assumed to equal the saturation concentration of water
vapour at the temperature of the leaf surface. A (m2) is
the area of the cuticle exposed and Pc (m s�1) is the
permeance (or conductance) of the cuticle (for a vapour-
based concentration gradient). Pc is equivalent to a mass
transfer coefficient (Cussler, 1997) relating the flux of

water across the cuticle per unit area to the concentration
difference.

Numerical values for cuticular permeances can easily
be converted to mole fraction-based conductances g9

wmol m�2 s�1x which are advantageous for field studies
(Hall, 1982; Nobel, 1991) according to

g9¼Pc
p

RT
(2)

where p, R and T stand for the atmospheric pressure, the
gas constant and the absolute temperature, respectively.
At standard pressure and 25 8C g9 differs from Pc by a
factor of 41.

For homogeneous membranes, permeances are directly
related to the fundamental transport properties of the
membrane by

P¼ KD

Dx
(3)

where K (dimensionless), D (m2 s�1) and Dx (m) are the
partition coefficient of water between the membrane and
the gas phase, the diffusion coefficient of water within the
membrane and the thickness of the membrane, respect-
ively. Even though the assumption of homogeneity is
not valid for the plant cuticle, equation 3 is a useful tool
for analysing and understanding cuticular permeability.
In qualitative terms, equation 3 predicts that permeance
and, at a given driving force, the flow rate across the
cuticle will increase with increasing relative solubility
and mobility of water in the membrane (or more
precisely: its transport-limiting barrier).

The water permeability of the cuticles has to be meas-
ured while strictly avoiding any interference by a residual
component of stomatal transpiration when fundamental
transport properties of cuticles or the relative import-
ance of the cuticular and stomatal pathway for trans-
piration are at the focus of interest. Therefore, only
astomatous leaf, fruit or stem surfaces are suitable, in
principle. Most studies so far have employed cuticular
membranes which can be obtained by an enzymatic
isolation method (Schönherr and Riederer, 1986). The
flux of water across the isolated cuticle can be measured
gravimetrically (Schönherr and Lendzian, 1981) and by
using 3H-labelled water (Schönherr, 1976a) or highly
sensitive humidity sensors (Becker et al., 1986). The latter
method is also suitable for measuring cuticular permeab-
ility in situ (Kerstiens, 1995). In the majority of the
experiments reported, a maximum concentration differ-
ence between the inner and the outer side of the cuticle
has been applied by using water-saturated and water-free
conditions on one and on the other side, respectively.

Permeances for water determined so far with astoma-
tous leaf cuticular membranes or in situ leaf cuticles range
over 2.5 orders of magnitude from 3.6310�7 (Vanilla
planifolia) to 1.4310�4 (Abies alba) m s�1 (Table 1). The
10%, 50% and 90% quartiles of the cuticular permeances
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reported are at 1.1310�6, 5.8310�6 and 3.7310�5 m s�1,
respectively. The central 50% of all permeance data fall
within a range from 2.2310�6 and 1.8310�5 m s�1 thus
varying at the most by a factor of 8. Cuticular water
permeances determined so far for fruit cuticular mem-
branes fall into a range from 2.2310�5 (Solanum
melongena) to 2310�4 m s�1 (Table 2). The median fruit
cuticular permeance of 8.6310�5 m s�1 is almost one
order of magnitude higher than the respective value for
leaf cuticles.

Interpreting the variability of cuticular water per-
meances in terms of adaptation to different habitats
and stressful environmental conditions is an ecophysio-
logical issue discussed for a considerable time (Stålfelt,
1956). There is no experimental evidence so far that
phenotypic plasticity allows plants to adapt cuticular
permeance to changes in evaporative demand. An extens-
ive study on the water permeability of leaf cuticles from
Citrus aurantium leaves grown under varying environ-
mental conditions was unable to detect any significant
effects (Geyer and Schönherr, 1990).

Explaining interspecific variation in terms of eco-
physiological adaptations proved to be more successful.

Table 1. Permeances (3106; m s�1) for water of astomatous leaf
cuticles

Permeances (Pc) are calculated for a vapour-phase driving force (g m�3).

Species Permeance Reference

Abies alba 140 (Lendzian et al., 1986)
Acer pseudoplatanusa 23 (Kerstiens, 1994)
Aechmea fasciata 4.2 (Lendzian and Kerstiens, 1991)
Allium cepa 19 (Schönherr and Mérida, 1981)
Anthurium brownii 1.15 (Helbsing et al., 2001)
Anthurium salviniae 0.68 (Helbsing et al., 2001)
Aspasia principissa 0.46 (Helbsing et al., 2001)
Betula pubescensa 10 (Kerstiens, 1994)
Camellia sinensis 4.68 (Schreiber and Riederer, 1996b)

5.78 (M Riederer, unpublished results)
Caularthron

bilamellatum
1.13 (Helbsing et al., 2001)

Citrus aurantium 5.55 (Schreiber and Riederer, 1996b)
7.10 (Baur, 1997)
9.52 (M Riederer, unpublished results)

12 (Becker et al., 1986)
13 (Lendzian and Kerstiens, 1991)
15 (Schönherr and Schmidt, 1979)
28 (Schönherr and Schmidt, 1979)
36 (Schönherr and Lendzian, 1981)
45 (Lendzian et al., 1986)
47 (Haas and Schönherr, 1979)
60 (Schönherr, 1976a)
69 (Geyer and Schönherr, 1990)

Citrus limon 20.4 (Schreiber and Riederer, 1996b)
Clivia miniata 0.48 (M Riederer, unpublished results)

1.1 (Becker et al., 1986)
5.1 (Mérida et al., 1981)
6.81 (Schreiber and Riederer, 1996b)

Clusia flava 2.02 (M Riederer, unpublished results)
Clusia uvitana 4.87 (M Riederer, unpublished results)

13.7 (M Riederer, unpublished results)
Coffea arabica 2.2 (Garrec and Plebin, 1986)
Corynocarpus

laevigatus
4.97 (M Riederer, unpublished results)

Cydonia oblongata 10.1 (M Riederer, unpublished results)
27.3 (Schreiber and Riederer, 1996b)

Delphinium sp.a 20 (Kerstiens, 1994)
Epidendrum nocturnum 1.77 (Helbsing et al., 2001)
Euonymus japonica 7.92 (M Riederer, unpublished results)

15.5 (Schreiber and Riederer, 1996b)
Fagus sylvatica 37 (Lendzian and Kerstiens, 1991)
Ficus benjamina 5.64 (Schreiber and Riederer, 1996b)
Ficus elastica 1.46 (M Riederer, unpublished results)

1.8 (Baur, 1997)
3.95 (M Riederer, unpublished results)
4.07 (Schreiber and Riederer, 1996b)
4.3 (Becker et al., 1986)

Forsythia intermedia 8.62 (M Riederer, unpublished results)
Forsythia suspensa 16.8 (Schreiber and Riederer, 1996b)
Ginkgo biloba 22.6 (Schreiber and Riederer, 1996b)
Garcinia spicata 6.38 (M Riederer, unpublished results)
Hedera helix 0.74 (Baur, 1997)

2.17 (M Riederer, unpublished results)
2.47 (Schreiber and Riederer, 1996b)
2.7 (Becker et al., 1986)
3.1 (Lendzian and Kerstiens, 1991)
4.3 (Schönherr and Lendzian, 1981)
5.6 (Lendzian and Kerstiens, 1991)

Ilex aquifolium 8 (Garrec and Kerfourn, 1989)
11 (Lendzian and Kerstiens, 1991)

Juglans regia 19.9 (Schreiber and Riederer, 1996b)
Ligustrum vulgare 18.8 (Schreiber and Riederer, 1996b)
Liriodendron tulipifera 18.2 (Schreiber and Riederer, 1996b)
Maianthemum bifolium 48.1 (Schreiber and Riederer, 1996b)

77 (Lendzian and Kerstiens, 1991)

Table 1. Continued

Species Permeance Reference

Monstera deliciosa 1.86 (Schreiber and Riederer, 1996b)
2.43 (M Riederer, unpublished results)

Nerium oleander 3.3 (Becker et al., 1986)
4 (M Riederer, unpublished results)

22.6 (Schreiber and Riederer, 1996b)
Notylia pentachne 1.27 (Helbsing et al., 2001)
Olea europaea 5.46 (Schreiber and Riederer, 1996b)
Oncidium ampliatum 0.95 (Helbsing et al., 2001)
Peperomia cordulata 4.61 (Helbsing et al., 2001)
Philodendron ilsemanii 1.04 (M Riederer, unpublished results)
Philodendron radiatum 1.18 (Helbsing et al., 2001)
Philodendron selloum 2.86 (Schreiber and Riederer, 1996b)
Philodendron

tripartitum
1.12 (Helbsing et al., 2001)

Polygonatum
multiflorum

72 (Lendzian and Kerstiens, 1991)

Polystachya foliosa 6.07 (Helbsing et al., 2001)
Potamogeton lucens 110 000 (Schönherr, 1976a)
Prunus aviuma 5.9 (Kerstiens, 1994)
Prunus laurocerasus 5.77 (Schreiber and Riederer, 1996b)

17 (Lendzian and Kerstiens, 1991)
Pyrus communis 6.34 (M Riederer, unpublished results)

8.29 (M Riederer, unpublished results)
12 (Becker et al., 1986)
21 (Schönherr and Lendzian, 1981)
67 (Baur, 1997)

Schefflera actinophylla 0.82 (Becker et al., 1986)
Sobralia fenzliana 2.66 (Helbsing et al., 2001)
Sobralia suaveolens 1.69 (Helbsing et al., 2001)
Stephanotis floribunda 33 (Baur, 1997)
Trichopilia maculata 2.17 (Helbsing et al., 2001)
Vanilla planifolia 0.36 (M Riederer, unpublished results)

0.74 (Schreiber and Riederer, 1996b)
Vinca minor 7.5 (Lendzian and Kerstiens, 1991)

aExperiments were performed with intact leaves; all other data were
obtained from isolated cuticular membranes.
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The water permeances of leaf cuticular membranes
from 21 plant species tended to cluster according to life-
forms and climate of origin (Schreiber et al., 1996a).
The lowest water permeabilities were observed with ever-
green leaves from epiphytic or climbing plants naturally
growing in a tropical climate. The next group in the
order of increasing cuticular permeance comprised xero-
morphic plants typically growing in a Mediterranean-type
climate. The group with the highest water permeances
combined deciduous plant species with mesomorphic
leaves growing in temperate climates (Fig. 1A).

It is illustrative to compare water permeances of plant
cuticles to water-vapour barriers encountered in everyday
life. The water permeabilities of cuticles from deciduous
and Mediterranean evergreen leaves are comparable to
those of polymer films (of approximately equal thickness)
used for food packaging (Fig. 1B). The permeances for
water of some evergreen and tropical leaf cuticles reach
values maximally one and a half orders of magnitude
lower than conventional polymer films and are still less
permeable to water than advanced synthetic materials
like liquid-crystal polymers (Langowski, 1997).

Correlation with chemical and
physical properties

The variation of cuticular water permeability observed
among different plant species and organs has stimulated
speculation on the underlying physical and chemical
causes. Intuitively, one might assume that, according
to Fick’s first law, differences in cuticular permeability
should be directly related to a variation in the thickness
of the cuticular membrane. Indeed, this is the explana-
tion offered by the classical and the majority of
the modern textbooks on plant physiology or ecology
especially when discussing adaptation of xerophytes to

their habitat. Despite the obvious plausibility of this
argument, there is no experimental evidence supporting
it. An early study had demonstrated that there was no
correlation between cuticular thickness and cuticular
transpiration (Kamp, 1930). Rigorous experiments with
astomatous cuticular membranes under controlled con-
ditions (Schönherr, 1982; Becker et al., 1986; Lendzian
and Kerstiens, 1991; Schreiber and Riederer, 1996b) were
unable to detect any positive relationship between water
permeance and the thickness of isolated leaf or fruit
cuticles (Fig. 2A).

This result is not as surprising as it may appear at
first sight. The cuticular waxes have been identified as
the actual barrier of plant cuticles against the diffusion
of water or solutes (Schönherr, 1982; Schönherr and
Riederer, 1989). This barrier, however, is not equally
distributed across the thickness of the cuticular mem-
brane. Actually, waxes are accumulated at the outer
surface of the cuticle as studies using polarization
microscopy (Meyer, 1938; Roelofsen, 1952; Sitte and
Rennier, 1963) and bi-directional desorption kinetics
(Schönherr and Riederer, 1988) have demonstrated.
However, the hypothesis that the amount of cuticular
waxes in a cuticle determines its permeance for water has
also been falsified by experimental evidence (Schreiber
and Riederer, 1996b). Estimates for the thickness of the
cuticular wax layer ranged from 0.1 to 5 mm in a sample
of cuticular membranes from 23 plant species but did not
explain the variation in cuticular permeance (Fig. 2B).

Similarly, all attempts to correlate water permeance
with the qualitative or quantitative composition of plant
cuticular waxes have failed so far. In hindsight, these

Table 2. Permeances (3106; m s�1) for water of astomatous
fruit cuticles

Permeances are calculated for a vapour-phase driving force (g m�3).
All data were obtained from isolated cuticular membranes.

Species Permeance Reference

Capsicum annuum 58.3 (Schreiber and Riederer, 1996b)
93.0 (Becker et al., 1986)

126 (Baur, 1997)
200 (Lendzian and Kerstiens, 1991)

Lycopersicon esculentum 27.0 (Schreiber and Riederer, 1996b)
53.0 (Lendzian and Kerstiens, 1991)
82.0 (Schönherr and Lendzian, 1981)

140 (Becker et al., 1986)
Malus sylvestris 90.0 (Schreiber and Riederer, 1996b)
Solanum melongena 22.0 (Becker et al., 1986)

78.0 (Schönherr and Schmidt, 1979)
120 (Schönherr and Schmidt, 1979)

Fig. 1. Range of permeances for water of leaf cuticular membranes
(vapour-based driving force). The data from Table 1 are classified
according to leaf anatomy and habitat: class 1, deciduous species with
mesomorphic leaves growing in temperate climates; class 2, xeromorphic
plant typically growing in a Mediterranean-type climate; class 3,
evergreen leaves from epiphytic or climbing plants naturally growing
in a tropical climate (A). Permeances for water of synthetic polymer
films 1 mm thick (B). (Data recalculated from Langowski, 1997.)
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attempts appear also to be somewhat naı̈ve as (1) the
current knowledge on the chemical composition of
cuticular waxes is arbitrarily restricted and biased toward
their aliphatic components (Riederer and Markstädter,
1996) and, (2) there is evidence for discrete layers of
cuticular wax with highly divergent chemical composi-
tion (Jetter et al., 2000). As long as the transport-limiting
wax layer of a plant cuticle can not be identified and
analysed thoroughly, correlating bulk chemical composi-
tion of cuticular waxes with water permeance makes
little sense.

There are, however, significant relationships between
cuticular water permeance and cuticular transport
parameters determined for solutes. The penetration of
water and small organic acids (benzoic, salicylic and
2,4-dichlorophenoxy acetic acid) across the cuticular
membranes from several plant species was highly

correlated (Niederl et al., 1998). The same was true for
water permeance of cuticular membranes from 24 plant
species and the diffusion coefficients of octadecanoic
acid in the reconstituted cuticular waxes of these species
(Schreiber and Riederer, 1996a). The quantitative
property–property relationships obtained for both sys-
tems are predictive tools for the estimation of cuticular
permeance in species without astomatous cuticles. The
success of this approach also implies that the permeance
for small organic solutes or the properties of cuticular
waxes as typified by the diffusion coefficient of a mobility
probe reflect physical characteristics of the transport-
limiting barrier of the cuticle common to both water and
solute diffusion.

Environmental effects on cuticular permeability

Under natural conditions, leaf surfaces are damaged
either by wind or abrasion (Pitcairn et al., 1986; Hoad
et al., 1992) or by herbivores and microbial pathogens
resulting in leaky cuticles. But even when such ‘brute
force’ attacks are disregarded the permeability of a
barrier membrane is no static property. Rather, it is
subject to changes according to physical or chemical
effects from its surroundings. This is equally true for,
for example, synthetic polymer membranes and lipid
bilayers and obviously also applies to plant cuticles.

Temperature is the predominant physical factor
influencing the permeance of a barrier. Two terms con-
tributing to permeance (see equation 3) are temperature-
dependent: the diffusion coefficient of a molecule
diffusing in the membrane increases with temperature
while its partition coefficient between the membrane and
the adjacent phases (generally) decreases. Temperature
has a stronger effect on diffusion than on partition-
ing; that is why permeances generally increase with
temperature.

Leaf surface temperatures may vary over a range
of up to 100 K primarily depending on air temperat-
ure, irradiation and transpiration. Even under temperate
climatic conditions the annual variation of leaf surface
temperature may range from �20 8C to 50 8C (Huber,
1959; Nito et al., 1979; Kuraishi and Nito, 1980). The
concomitant changes in cuticular permeance for water
are pronounced (Schönherr et al., 1979; Schönherr and
Mérida, 1981). In a recent comparative study involving
leaf cuticles from 12 plant species cuticular permeance
for water increased by roughly a factor of 2 in the
temperature range from 15 8C to 35 8C (Fig. 3A). Higher
temperatures reaching up to 50 8C enhanced cuticular
water permeability by approximately one order of magni-
tude (Fig. 3B). A strong dependence of cuticular per-
meability on temperature has also been reported for the
penetration of organic solutes across plant cuticular

Fig. 2. Plots of vapour-based permeances of cuticular membranes
isolated from leaves (21 species) and fruits (2 species) versus the thick-
ness of the cuticle (A) and the thickness of cuticular wax (B).
Thickness was estimated from mass-per-unit-area data using specific
masses of 1.1 and 0.8 g cm�1 for cuticular membranes and waxes,
respectively. (Data were recalculated from Schreiber and Riederer,
1996b.)
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membranes (Baur and Schönherr, 1995, 1998; Schönherr
and Baur, 1996; Baur et al., 1997).

It should be noted that these data are corrected for
the temperature dependence of the water saturation
deficit and thus describe the temperature effect on cutic-
ular transport properties exclusively. Under real condi-
tions, the combination of decreasing cuticular resistance
and increasing driving force will lead to drastically
elevated flow rates of water across the cuticle.

The physical properties of the cuticular transport
barrier may also be altered by chemical impacts. Due to
its interfacial nature the plant cuticle is exposed to both
biogenic and anthropogenic chemicals reaching it either
via the apoplast or the atmosphere. Numerous studies
have dealt with the effects that organic chemicals used in
pesticidal formulations exert on the cuticular permeab-
ilities for water and solutes (Riederer and Schönherr,
1990; Schönherr, 1993; Schönherr and Baur, 1996, 1997;
Schreiber et al., 1996b; Burghardt et al., 1998; Baur
and Schönherr, 1998; Baur, 1999). In the presence of

such penetration enhancers cuticular permeabilities
may (reversibly) increase by more than one order of
magnitude. Even though a strictly mechanistic explana-
tion of this phenomenon is still outstanding, evidence
has been accumulated indicating a plasticizing action of
certain organic compounds on the physical structure of
plant cuticular wax. Some data even suggest that com-
pounds of biogenic origin may have similar effects on
cuticular water permeability (Schönherr, 1993) which,
finally, might bring cuticular transpiration at least to a
certain degree under metabolic control.

The pathway of water diffusing
across the cuticle

The simplest conceptual model for the penetration of the
plant cuticle by any uncharged molecule is that of
a sorption-diffusion membrane. The permeating mole-
cules are sorbed by the membrane on the one side,
diffuse across it dissolved as single particles in the mem-
brane phase and subsequently are desorbed on the other
side (Barrie, 1968; Vieth, 1991). This model perfectly
explains the permeability of the plant cuticle for lipo-
philic organic non-electrolytes like the active ingredients
of pesticidal formulations or pollutants. In these cases,
variation in cuticular permeance between two aqueous
compartments can primarily be explained by differences
in the solubility of the permeant in the cuticle (cuticleu
water partition coefficient) and, to a minor degree, by
varying molecular size which influences the diffusion
coefficient (Schönherr and Riederer, 1989; Riederer, 1990,
1995; Baur et al., 1996, 1997).

This model reaches its limits when polar compounds
are considered. Extrapolating the quantitative property–
property relationships established for predicting cuti-
cular permeances of lipophilic compounds to substances
with 1-octanoluwater partition coefficients -1 leads to
values much lower than the rates of uptake observed for
this type of substances. The transfer of inorganic ions
and polar organics across plant cuticles is considerable
as exemplified by the substantial rates of leaching
(Tukey, 1970) and the practical importance of foliar
fertilization. The efficacy and commercial success of
certain water-soluble herbicides applied to the foliage
(e.g. glyphosate) is also in contradiction to predictions
derived from the permeability of lipophilic substances.

This contradictory evidence relates to a long-standing
debate whether some kind of polar pores may contribute
to cuticular permeability to water and polar solutes
(Lyshede, 1978; Maier-Maercker, 1979; Hoch, 1979;
Hallam, 1982). Electron micrographs depicting strands
of polysaccharide material stretching over the whole
thickness of cuticles were considered as evidence for the
chemical nature of the postulated pores (Jeffree, 1996).

Fig. 3. Dependence on temperature of the permeance for water of
leaf cuticles from selected plant species. Temperature courses in the low
(A) and high-temperature range (B) are shown for leaf cuticles from
Hedera helix, Camellia sinensis, Pyrus communis, and Liriodendron
tulipifera (M Riederer, unpublished data).
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New experimental evidence helped to substantiate the
two-pathway hypothesis for the diffusion of solutes and
water across the plant cuticle (Schönherr, 2000; Schreiber
et al., 2001): One pathway passing through the amorph-
ous phase of cuticular wax is accessible only to lipo-
philic solutes. The second pathway is made up by pores
of molecular dimensions filled with water which can be
travelled by water-soluble organic compounds and by
inorganic ions. The presence of such pores has been
demonstrated experimentally for de-waxed plant cuticles
(Schönherr, 1976b) and postulated from observations
that, at least in some plant species, the water permeab-
ility of isolated cuticles (Schönherr and Schmidt, 1979;
Schönherr and Mérida, 1981) or cuticular transpiration
(van Gardingen and Grace, 1992; Kerstiens, 1996) depend
on relative humidity.

The humidity effect on cuticular water permeability,
however, is small in comparison to that on polar polymer
films (Schönherr, 1982) indicating that the polar path-
way across the plant cuticle is only of minor importance
for overall permeability. Consequently, the bulk of water
molecules diffusing across a plant cuticular membrane
is expected to do so dissolved in the amorphous phase
of the cuticular wax, i.e. the so-called lipophilic path-
way. Water is an uncharged small molecule that readily
penetrates lipid monolayers (LaMer et al., 1964), bio-
logical membranes (Sha’afi, 1981) and semi-crystalline
aliphatic polymers like polyethylene (Barrie, 1968). The
importance of the lipophilic pathway for the diffusion
of water across plant cuticles is further emphasized by
two empirical findings: (1) the large effects de-waxing
has on cuticular water permeability (Schönherr, 1982)
and (2) the good correlation between cuticular water
permeabilities and the diffusion coefficients of lipophilic
mobility probes in the reconstituted waxes of different
plant species (Schreiber and Riederer, 1996a). In sum-
mary, the small size and the lack of a charge allow
water to cross the cuticle predominantly via the lipophilic
pathway while a minor fraction of the water may diffuse
through polar pores.

Outlook

The application of quantitative physical and chemical
methods for characterizing cuticular properties and
functions has considerably advanced our knowledge on
this important interface between the plant and the sur-
rounding atmosphere. The effects that physical and
chemical factors like temperature and biogenic or anthro-
pogenic organics may exert on cuticular water per-
meability can now be incorporated into transpiration
models or working hypotheses for further investigation.
A much clearer picture of the pathways water molecules
diffuse along within the plant cuticle is emerging from

the comparative study of water and solute permeability
of isolated plant cuticles.

However, major questions both on the molecular and
the organismic level of the problem remain unanswered
so far. Despite considerable effort the relationship
between the water permeability of a cuticle and its
chemical composition and physical structure is not well
understood. Further work will have to deal with the
localization and analysis of that fraction of total cuticular
waxes that actually determines the barrier properties of
the cuticle. Progress on this route will also depend on the
elucidation of the physical structure of cuticular waxes
and how this property is influenced by the mixing
behaviour of the wax constituent.

In terms of whole-plant performance under stress
and ecophysiological adaptations to stressful conditions
the role the plant cuticle plays in ensuring the survival
and reproductive success of an individual plant has yet to
be studied experimentally. It is known, of course, that
plant cuticular permeability contributes to minimize
uncontrolled water loss at stomatal closure. However,
the available quantitative data do not allow a compar-
ative assessment of the relative contributions of strictly
cuticular and residual stomatal transpiration, respect-
ively, to total water loss from leaves under drought
stress.
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Jetter R, Schäffer S, Riederer M. 2000. Leaf cuticular waxes
are arranged in chemically and mechanically distinct layers:
evidence from Prunus laurocerasus L. Plant, Cell and
Environment 23, 619–628.

Kamp H. 1930. Untersuchungen über Kutikularbau und
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