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Abstract

Desiccation tolerance (DT) in orthodox seeds is ac-
quired during seed development and lost upon
imbibition/germination, purportedly upon the resump-
tion of DNA synthesis in the radicle cells. In the pre-
sent study, flow cytometric analyses and visualization
of microtubules (MTs) in radicle cells of seedlings of
Medicago truncatula showed that up to a radicle length
of 2 mm, there is neither DNA synthesis nor cell
division, which were first detected in radicles with
a length of 3 mm. However, DT started to be lost
well before the resumption of DNA synthesis, when
germinating seeds were dried back. By applying an
osmotic treatment with polyethylene glycol (PEG) be-
fore dehydration, it was possible to re-establish DT in
seedlings with a radicle up to 2 mm long. Dehydration
of seedlings with a 2 mm radicle, with or without PEG
treatment, caused disassembly of MTs and appearance
of tubulin granules. Subsequent pre-humidification
led to an almost complete disappearance of both MTs
and tubulin granules. Upon rehydration, neither MTs
nor tubulin granules were detected in radicle cells of
untreated seedlings, while PEG-treated seedlings were
able to reconstitute the microtubular cytoskeleton
and continue their normal development. Dehydration
of untreated seedlings also led to an apoptotic-like
DNA fragmentation in radicle cells, while in PEG-

treated seedlingss DNA integrity was maintained. The
results showed that for different cellular components,
desiccation-tolerant seedlings may apply distinct strat-
egies to survive dehydration, either by avoidance or
further repair of the damages.
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Introduction

Desiccation tolerance (DT) in plants can be considered as
the ability to rehydrate successfully after the removal of
80-90% of protoplasmic water, leading to moisture content
(MC) below 0.3 g g{1 (or 23% on a wet basis), when the
hydration shell of molecules is lost (Oliver et al., 2000;
Hoekstra et al., 2001). There are three criteria that a plant or
plant structure must meet in order to survive such severe
loss of protoplasmic water: (i) limitation of the damage
suffered by the cells during desiccation to a repairable
level; (ii) maintenance of its physiological integrity in
the dry state; and (iii) mobilization of repair mechanisms
upon rehydration aiming to revert the damages caused by
desiccation and/or rehydration (Bewley, 1979).

In orthodox seeds, DT is acquired during seed develop-
ment, enabling them to withstand maturation drying, when
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more than 90% of the water may be lost (Adams and Rinne,
1980). DT is maintained after shedding, allowing further
drying of seeds, when MC may be diminished toc.0.05gg ",
without loss of viability. When dried seeds are imbibed,
DT remains unchanged for some time, so they can be
dried back to their original MC without irreversible dam-
age. However, if seeds are allowed to imbibe longer, DT
is gradually lost. The point at which DT starts to be lost
varies among species if analysed in terms of imbibition
time (Senaratna and McKersie, 1983, 1986; Hong and
Ellis, 1992; Reisdorph and Koster, 1999; Koster et al.,
2003; Ren and Tao, 2003) or protruded radicle length
(Lin et al., 1998; Leprince et al., 2000; Pukacka, 2001;
Buitink er al., 2003). However, if germination is assessed
regarding the activation of the cell cycle, loss of DT
coincides, irrespective of species, with the resumption of
cell division (Berrie and Drennan, 1971; Osborne et al.,
2002) or, more frequently, DNA synthesis (Sargent et al.,
1981; Dasgupta et al., 1982; Deltour, 1985; Osborne and
Boubriak, 1994; Osborne, 2000; Boubriak ef al., 2000). It
has been shown that cells in the G, phase of the cell
cycle, with duplicated DNA, are more sensitive to stress
than cells that are still in the G;, pre-synthetic phase
(Deltour, 1985; Sliwinska, 2003). It has been suggested,
however, that although DNA replication is a suggestive
developmental marker for the loss of DT in germinating
seeds, it is not necessarily the reason (Sargent et al., 1981).

Another component of the cell cycle that may be in-
volved in the loss of DT during germination is the
microtubular cytoskeleton, which is markedly sensitive to
desiccation stress (Sargent et al., 1981). Microtubules
(MTs) are elongated tubular structures, made of o and
B-tubulin, which in plant cells play an important part in cell
elongation, determination of the division site, chromosome
separation, and cytokinesis (Alberts et al., 2002; Wasteneys
and Galway, 2003). In desiccation-sensitive seeds MTs can
be irreversibly deranged by dehydration (Berjak and
Pammenter, 2000). Microtubule reassembly is among the
cellular repair processes that have been linked to DT
(Oliver, 1996; Mycock et al., 2000).

The maintenance of the genetic information carried by
the DNA is essential to cell survival upon dehydration and
rehydration (Osborne et al., 2002). The stability of the
DNA on dehydration and the ability for its repair on
rehydration is a prominent feature displayed by desiccation-
tolerant seeds (Boubriak ez al., 1997). Seeds that are allowed
to germinate until (or beyond) the point where they become
desiccation-sensitive, can experience irreversible DNA deg-
radation when subjected to dehydration. When cells are
confronted with environmental stresses, they can either die
passively (accidental cell death) or can self-destruct (pro-
grammed cell death), depending on the stress type and
intensity (Danon et al., 2000). Self-destruction is orches-
trated by an active mechanism known as apoptosis, the
biochemical hallmark of which is the cleavage of the DNA

at internucleosomal sites by endonucleases, generating
oligonucleosomal fragments. This DNA fragmentation can
be detected by the formation of DNA ladders on agarose
gels (Stein and Hansen, 1999). For cell death processes
other then apoptosis, a smear of broken DNA, instead of
a clear fragmentation pattern is seen (Wang et al., 1998).

The genetic information for DT is certainly present in the
genome of plants that bear orthodox seeds. In those plants,
the restriction of DT to specific stages of seed development
is due to differences in the control of gene expression
(Bartels and Salamini, 2001). The cellular protection
system exhibited by those seeds may be induced in veg-
etative tissues by environmental cues related to drying
(Oliver et al., 2000). The feasibility of the re-establishment
of DT in seedlings originated from orthodox seeds by
applying an osmotic stress, as shown by Bruggink and van
der Toorn (1995) and Buitink et al. (2003), has appeared as
an outstanding tool for studies on the mechanisms of
desiccation tolerance and sensitivity in seeds. By using
such an approach, the present study aimed to investigate
the relationship of the DNA (relative content and integrity)
and microtubule configurations with the loss and re-
establishment of desiccation tolerance in germinating seeds
of Medicago truncatula Gaertn. cv. Jemalong A17.

Materials and methods

Plant material

Medicago truncatula Gaertn. cv. Jemalong A17 plants were routinely
grown in an environmentally controlled growth chamber (16/8 h
photoperiod; 170 pmol m ™2 s~ '; 25 °C; 60% RH). Mature pods were
collected at shedding, around 30 d after flowering, stored at 20 °C
(Journet et al., 2001) and seeds were extracted manually when needed.

Dormancy release and seed germination

Medicago truncatula seeds exhibit a combination of physical (coat-
imposed) and physiological dormancy, with the latter lasting for 3—4
months following pod abscission (Journet et al., 2001). In order to
overcome these dormancies, seeds were chemically scarified by
immersing them in concentrated sulphuric acid for 5-10 min and
subjected to cold imbibition (36 h at 4 °C), in the dark, in Petri dishes
(9 cm diameter; 250 seeds per dish) with two filter papers (No. 595,
Schleicher & Schuell, Germany) moistened with 9 ml distilled water.
During cold imbibition Petri dishes were kept shaking on a benchtop
shaker (70 rpm). Seeds were transferred to new Petri dishes (9 cm
diameter; 50 seeds per dish) with two filter papers moistened with
2.5 ml of distilled water and kept in the dark at 20 °C (modified from
Sieberer et al., 2002). Seeds that showed radicle protrusion were
considered germinated. To characterize the dormancy release better,
the germination of 2-month-old seeds treated with sulphuric acid plus
cold imbibition was compared with seeds subjected to only one
treatment (acid scarification or cold imbibition) as well as to untreated
(control) seeds, in three replications of 50 seeds.

Moisture content (MC) determination

MC was assessed in four replications of 10 seeds (or radicles), by
oven-drying at 103 °C for 17 h, according to the International Seed
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Testing Association (ISTA, 1996). MC is expressed on a dry weight
basis, i.e. in g H,O g~ dry matter or simply g g~ .

DNA content assessment

Relative DNA content assessment was done by flow cytometry, using
suspensions of intact nuclei prepared from radicles excised from dry
seeds or seedlings with increasing protruded radicle length (1, 2, 3,
and 4 mm). Only the tip (1 mm) of the radicles, which includes the
root cap and the meristematic region, was used in the analyses. Each
treatment consisted of five replications of 10 radicle tips. Sample
preparation was done according to Arumuganthan and Earle (1991)
and analyses were performed with a flow cytometer (EPICS XL-
MCL, Beckman-Coulter, Miami, FL, USA) equipped with an argon
ion laser at 488 nm. Histograms were processed using ModFit LT
(Verity Software House, Topsham, ME, USA) for data analysis and
correction of the background noise. In each replication 10 000 nuclei
were analysed. Statistical analyses were performed with the software
SPSS 11.0.1.

Assessment of the loss of desiccation tolerance during
germination

Seeds were germinated as described previously, germination was
scored at various times and then seeds/seedlings were dehydrated.
Dehydration was done over a saturated solution of K,CO5 (43% RH)
in a closed box with circulating air at 23 °C for 3 d, based on Buitink
et al. (2003). After dehydration, seeds were pre-humidified in humid
air (100% RH) for 24 h at 20 °C to avoid imbibitional damage and
then rehydrated (2.5 ml H,O/Petri dish 9 cm; two filter papers; 20 °C;
in the dark). Seeds that germinated and seedlings that continued
their normal development were considered desiccation-tolerant. The
data of DT (%) were normalized to the maximum germination
attained (%) in the germination test. The experiment was replicated
three times with 50 seeds being used each time that germination and
DT were evaluated.

Re-establishment of desiccation tolerance

To assess the re-establishment of DT in seedlings, they were selected
by their radicle length (1, 2, 3, 4, and 5 mm) using a dissection
microscope and a metallic ruler with 0.5 mm scale divisions and
either dried directly or after 3 d of incubation in a polyethylene glycol
(PEG) 6000 solution (355 g PEG dissolved in 1.0 1 H,O). Incubation
was done in the dark, in 9 cm Petri dishes containing two filter papers
wetted with 7 ml of PEG solution. The incubation temperature of
10 °C which gives a water potential of —1.7 MPa, used by Buitink
et al. (2003) for the re-establishment of DT in seedlings of M.
truncatula cv. Paraggio, was not suitable for cv. Jemalong A17 used
in the present study because it could not inhibit protruding radicles
from continuing growth during incubation. The problem was solved
by carrying out the incubation at 5 °C. By decreasing the temperature,
the water potential of the PEG solution was slightly lowered to
—1.8 MPa. After incubation, seedlings were rinsed thoroughly in
distilled water and then dehydrated, pre-humidified, and rehydrated
as described before. Seedlings that resumed normal growth after
rehydration were considered desiccation-tolerant. Four independent
experiments with 50 seedlings each were carried out.

Viability test (tetrazolium test)

Seedlings with a radicle length of 2 mm were dehydrated (with or
without previous PEG treatment), pre-humidified, and incubated in
a 1% (w/v) solution of 2,3,5-triphenyl tetrazolium chloride (Merck,
Darmstadt, Germany), at 20 °C for 18 h in the dark. Stained tissues
were considered viable, and unstained white tissues were considered
dead (ISTA, 1996). The test was done using three replications of
50 seedlings per treatment.
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DNA isolation and electrophoresis to assess
DNA fragmentation

Chromosomal DNA was extracted from 2 mm long radicles of
seedlings (control and dehydrated with and without PEG treatment)
and isolated following a protocol modified from Liu er al. (1995).
Approximately 40 mg of radicles from hydrated (control) and 20 mg
from dehydrated (PEG-treated and untreated) seedlings were ground
to a fine powder with a mortar and pestle in liquid nitrogen and mixed
with the extraction buffer (0.6 ml NaCl, 100 mM TRIS-HCI pH 7.5,
40 mM EDTA, 4% sarkosyl, and 1% SDS) previously diluted with
urea and phenol. Phenol:chloroform was added, the mixture was
centrifuged and the aqueous phase collected and mixed with iso-
propanol. DNA was precipitated by inverting the tubes a few times.
After incubation for 10 min at room temperature and centrifugation,
the pellet was washed with 80% ethanol and dissolved in TRIS-
EDTA (TE) pH 8.0 containing RNase A. Samples (5 pg lane ') of
DNA were loaded on a 1% agarose gel stained with ethidium
bromide.

Immunohistochemical detection of the microtubular
cytoskeleton

Radicles were excised from seeds/seedlings, both before imbibition
(dry seeds) and after germination, with lengths of 1, 2, 3, and 4 mm.
Radicles (2 mm long) were also excised from seedlings after each of
the following steps, with or without PEG treatment: dehydration, pre-
humidification, and rehydration. The type of fixation used depended
on the moisture content of the tissue. Radicles excised from dry
seeds/seedlings (both before imbibition and after germination
followed by dehydration) were chemically fixed in water-free
methanol+0.1% glutaraldehyde for 4 h, at 20 °C. Radicles excised
from undried seedlings were plunged into liquid propane (cooled
down in liquid nitrogen) and transferred to cryo-tubes containing
frozen freeze-substitution medium (water-free methanol+0.1%
glutaraldehyde), also cooled down in liquid nitrogen. The cryo-tubes
were put in a freeze substitution unit (FreasySub, Cryotech Benelux,
Schagen, The Netherlands) for 78 h. The next steps were similar for
both chemically and cryo-fixed samples. The fixative medium was
replaced by ethanol (series of increasing concentrations), followed by
embedding in butylmethylmethacrylate (BMM) and UV polymeri-
zation at —20 °C for 48 h, according to Baskin er al. (1992). Five
roots were analysed for each treatment. Longitudinal sections (3 pm
thick) were placed on slides and BMM was removed by washing in
acetone. The slides were then rinsed in phosphate buffered saline
(PBS) and sections were blocked in 100 mM hydroxyl tetra
ammonium chloride (HAC) and in 26 mM bovine serum albumin
(BSA). Next, they were incubated with the primary antibody (mouse
anti-o-tubulin [Sigma, Zwijndrecht, The Netherlands], diluted 1:200
v/v), followed by the secondary antibody (goat anti-mouse IgG
conjugated with fluorescein-5-isothiocyanate — FITC [Molecular
Probes, Leiden, The Netherlands], diluted 1:200 v/v). As a control,
slides without the first antibody were used for every treatment. A
confocal laser scanning microscope (Biorad MRC-600) and an
epifluorescence microscope (Nikon Labophot) were used for the
visualization of microtubules.

Results

Medicago truncatula seed germination: dormancy
release and imbibition

Germination of seeds without pre-germination treatment
(control) remained around 5% until 11 d, increasing
afterwards and reaching its maximum (95%) at 17 d of
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imbibition. Seeds subjected to chemical scarification or
cold imbibition germinated faster than the control, with
a better performance by acid-treated seeds, suggesting that
in the combined dormancy present in M. truncatula seeds,
the physical (seed coat) dormancy is stronger than the
physiological (embryo) dormancy. The most efficient
treatment was achieved by the combination of acid scari-
fication and cold imbibition that allowed the start of
germination after a few hours of imbibition at 20 °C,
reaching the maximum (96%) within 1 d (Fig. 1).

The imbibition curve of seeds chemically scarified and
subjected to cold imbibition is shown in Fig. 2. Phase 1 of
imbibition, characterized by a rapid increase in fresh
weight, occurred in the first 9 h. Between 9 h and 40 h of
imbibition, the gain in fresh weight was very small,
characterizing the plateau or phase 2 of imbibition. Visible
germination (radicle protrusion) started after 42 h of
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Fig. 1. Germination of Medicago truncatula seeds at 20 °C after various
treatments for dormancy release: chemical scarification with sulphuric
acid; cold imbibition (4 °C) for 36 h; chemical scarification plus cold
imbibition; and control. Each data point is the mean of three replications
of 50 seeds. Bars represent standard deviation.
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Fig. 2. Imbibition curve, germination, and loss of desiccation tolerance
of chemically scarified Medicago truncatula seeds. Seeds were imbibed
for 36 h at 4 °C and then transferred to 20 °C. Desiccation tolerance was
determined after drying of the imbibed/germinated seeds, followed by
pre-humidification and rehydration. Seeds that germinated or seedlings
that resumed radicle growth and normal development were considered
desiccation-tolerant. Each data point is the average of three independent
experiments of 50 seeds/seedlings. Bars represent standard deviation.

imbibition (or 6 h after transfer to 20 °C). After this point,
germinated seeds (seedlings) entered phase 3, resuming
the increase in fresh weight (Fig. 2). Although seeds
germinated only after transfer to 20 °C, they were also
able to do so at 4 °C, when kept at this temperature for 4 d
(not shown).

DNA content

Flow cytometric analyses of nuclear DNA contents in
radicles of mature dry seeds of M. truncatula revealed
a high 4C DNA content (45%), which remained unchanged
during germination and radicle growth until 2 mm. With
further growth the relative content of 4C nuclei increased
significantly, reaching 63% in 3 mm long radicles, levelling
off afterwards, with 65% of 4C DNA in 4 mm long radicles
(Fig. 3). The 4C DNA content in 2 mm long radicles
remained unchanged during incubation in PEG for 3 d
(not shown).

The relation between the progress of germination and
loss of desiccation tolerance

In order to relate the course of germination with the loss
of DT, seeds were chemically scarified, imbibed (cold
imbibition followed by imbibition at 20 °C) and, at various
times, germination and DT evaluated. Germination, as
assessed by radicle protrusion, did not occur during the
36 h of cold imbibition, but was observed after 7 h of im-
bibition at 20 °C (43 h of total imbibition time). From this
point germination raised sharply until its maximum (96%)
by 56 h of total imbibition time (Fig. 2). Before the start of
the germination, i.e. until 43 h of imbibition, DT remained
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Fig. 3. Protruded radicle length and desiccation tolerance in Medicago
truncatula seedlings with (closed symbols) and without (open symbols)
previous incubation in PEG, and 4C DNA content of radicle cells from
dry seeds and seedlings. DT was determined after drying the seedlings
with or without PEG treatment, followed by pre-humidification and
rehydration. Seedlings that resumed radicle growth and normal de-
velopment upon rehydration were considered desiccation-tolerant. Each
data point is the average of four independent experiments of 50 seedlings.
Bars represent standard deviation. For flow cytometry each data point is
the average of five replications of 10 radicle tips. Bars represent standard
deviation.
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unchanged, at 100%, dropping fast afterwards, inversely
related to the progress of germination (Fig. 2).

Typically, even for a homogeneous batch of seeds,
germination did not occur uniformly. Consequently, at any
given time-point of the course of germination after 43 h
(Fig. 2), the population of seeds is comprised of germinated
(at different stages) and non-germinated seeds. Thus, to
characterize the loss of DT to the progress of the germination
in amore accurate way, seeds were put to germinate, selected
by their protruded radicle length, and tested again for DT.
The results show that right after visible germination, when
the protruded radicle length was 1 mm, only 12% of the
seedlings was still desiccation tolerant, i.e. able to resume
normal growth after being dehydrated and rehydrated.
Seedlings with a radicle length of 2 mm or longer lost DT
completely (Fig. 3). Seedlings that did not resume radicle
growth, frequently showed growth of the cotyledons and, to
a lesser extent, also of the hypocotyl. However, the longer
the radicle before dehydration, the less frequent the growth
of cotyledons and hypocotyl (not shown).

Re-establishment of desiccation tolerance in
seedlings by incubation in PEG

In order to relate re-establishment of DT to the progress of
germination, seedlings of M. truncatula with radicle
lengths ranging from 1 mm to 5 mm were incubated in
PEG solution, dehydrated, pre-humidified, and rehydrated.
Seedlings that resumed radicle growth after dehydration
and rehydration and showed normal development were
considered desiccation tolerant. The results in Fig. 3 show
that DT could be substantially re-induced (84%) in seed-
lings with a radicle length of up to 2 mm. From 2 mm
onwards there was an abrupt drop in DT, decreasing in
value to 33% at 3 mm and to near zero at 4 mm (Fig. 3). As
had already been observed for untreated seedlings, PEG-
treated seedlings that did not resume radicle growth
frequently showed elongation of the cotyledons and, to
a lesser extent, also of the hypocotyl (up to 3 cm). This
was mainly observed when the protruded radicle before
dehydration was short, i.e. 1-2 mm (not shown). Thus, the
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radicle appeared to be the more desiccation-sensitive part of
the seedling, followed by the hypocotyl and cotyledons.

Seed viability

Although seedlings with a radicle of 2 mm did not resume
radicle growth after dehydration (without PEG), pre-
humidification, and rehydration (Fig. 3), their radicles
were turgid and apparently healthy during the first days
following rehydration. Therefore, a tetrazolium test was
performed in order to assess biochemically the viability of
both untreated and PEG-treated seedlings (2 mm long
radicles) after dehydration and pre-humidification. All
untreated seedlings showed dark-red stained cotyledons
and unstained radicles (Fig. 4A), indicating that cotyledon
cells survived dehydration whereas radicle cells did not.
Nevertheless 10% of these seedlings showed a dark-red
stained hypocotyl, indicating that cells in that region were
still alive. In 100% of the PEG-treated seedlings the
cotyledons were also dark-red stained, while different
situations were observed in the radicle and hypocotyl. In
33% of them, both radicle and hypocotyl were dark-red
stained (Fig. 4B); in 36% a dark-red staining of the
hypocotyl occurred and a partial staining (dark- or light-
red) of the radicle, normally in the tip (Fig. 4C); 12%
showed dark-red stained hypocotyls and light-red stained
radicles (Fig. 4D); 8% remained with white, unstained
radicles and hypocotyls (Fig. 4E); and 11% showed un-
stained radicle and dark-red stained hypocotyl (Fig. 4F).

Changes in moisture content (MC) of the radicles
during incubation in PEG, dehydration,
pre-humidification, and rehydration

During incubation in PEG, MC of 2 mm long radicles
decreased steadily in the first 9 h, from 3.74 g g~ ' to 2.35
g g ', and then slowly until 72 h (2.24 g g ') (Fig. 5A). In
terms of percentage, 37% of the water was removed in the
first 9 h and, by the end (72 h), 40% of the water had been
lost. During dehydration the rate and extent of the water
loss were similar in radicles of both PEG-treated and

Fig. 4. Tetrazolium test performed on seedlings (2 mm long radicles) of Medicago truncatula following dehydration (with or without previous PEG
treatment) and pre-humidification. (A) Untreated seedlings showing unstained radicles and dark-red stained cotyledons. (B—F) PEG-treated seedlings.
Cotyledons of all seedlings stained dark-red. (B) Radicle and hypocotyl totally dark-red stained; (C) radicle partially stained (arrow) and hypocotyl
(arrowhead) stained; (D) radicle light-red stained and hypocotyl (arrowhead) stained; (E) radicle and hypocotyl unstained; (F) radicle unstained and

hypocotyl (arrowhead) stained.
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untreated seedlings, which rapidly lost, respectively, 82%
and 93% of the water in the first 2 h of drying (Fig. 5B,
inset). By the end (72 h) the radicle MCs of PEG-treated
and untreated seedlings were 0.20 g and 0.15 g g ',
respectively (Fig. 5B), showing no statistical difference
between them and with the original (dry seed) radicle MC
(0.19 g g~ 1. During pre-humidification (for 24 h) and the
first 24 h of rehydration, changes in MC were again similar
in radicles from both PEG-treated and untreated seedlings.
During pre-humidification MC increased at a constant and
low rate to around 1.3 g zg,f1 (Fig. 5C, 0-24 h) and
rehydration quickly increased MC, with the highest rates
occurring in the first hour. After 24 h of rehydration, the
radicle MCs of PEG-treated and untreated seedlings were
6.21 and 5.72 g g~ ', respectively (Fig. 5C).

4.0
A

— 4
D 361
2
3 321
c
Q
o
© 281
=}
k7]
(o]
S 247 c

20 + + T + +

0 12 24 36 48 60 72
Time of incubation in PEG (h)

5.0
- —— untreated B
S 4.0]| = PEG-treated 4.0
€ 3.0
9 3.0 20
§ .
o 2'0! 1.0 ,
2 0.0
i) 0O 05 1 15 2
o 4

0.0 t t t t t

0 12 24 36 48 60 72
Time of dehydration (h)

7.0
— C
> 6.0 ~O— untreated
o
= 50 —8— PEG-treated
[
2
c
[o]
o
g
=2
L2
o
=

0.0 t t t t t t t

0 6 12 18 24 30 36 42 48
Time of pre-humidification and rehydration (h)

Fig. 5. Changes in the moisture content (g H,O g71 dry matter) of
the radicles (2 mm long) of seedlings during (A) incubation in PEG;
(B) dehydration, and (C) pre-humidification (for 24 h) followed by
rehydration.

Detection of DNA fragmentation in seedlings subjected
to dehydration

Analysis of DNA integrity in 2 mm long protruded radicles
revealed DNA degradation in radicles excised from seed-
lings subjected to dehydration (Fig. 6; lanes 2 and 3), while
control seedlings (not dehydrated) showed intact DNA.
DNA fragmentation was much stronger in untreated than
in PEG-treated seedlings, with the laddering pattern
composed of multimers of about 200 bp.

Microtubular cytoskeleton in radicles before and
after germination

Radicles of dry seeds and of seedlings were analysed for
microtubular cytoskeleton configurations in order to char-
acterize their changes during radicle growth and to relate
them to the loss of DT. In dry seeds a high level of
fluorescence was detected in the form of granules, in-
dicating that, at that stage, tubulin was present in granules
in the cytoplasm, instead of being assembled into MTs (Fig.
7A). In seedlings with a radicle length of 1 mm (Fig. 7B)
and 2 mm (Fig. 7C) abundant cortical microtubular arrays
were observed with MTs transversely oriented to the
direction of cell elongation. In 3 mm long radicles cortical
MTs (Fig. 7D) and the first mitotic MTs were detected
(Fig. 7E), indicating the start of cell division. In 4 mm
long radicles the number of cells entering the M phase of
the cell cycle was much higher than in 3 mm long radicles,
with all the mitotic MT configurations (preprophase band,

Fig. 6. Agarose gel of genomic DNA extracted from 2 mm long radicles
of seedlings of Medicago truncatula. (M) Marker with the band lengths
shown in the left; (1) control (not subjected to dehydration); (2) PEG-
treated seedlings (dehydrated after incubation in PEG); and (3) untreated
seedlings (dehydrated without previous incubation in PEG). DNA
samples (5 png) were loaded on a 1% agarose gel stained with ethidium
bromide.
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Fig. 7. Fluorescence micrographs of radicle cells of dry seeds and seedlings of Medicago truncatula, labelled with o-tubulin antibody and with
a fluorescent secondary antibody. (A) Dry seed showing abundant fluorescent granules; (B) 1 mm protruded radicle with well-established cortical
microtubular cytoskeleton arrays oriented perpendicularly to cell (and radicle) elongation; (C) 2 mm protruded radicle showing the same situation as
the previous figure; (D, E) 3 mm protruded radicle: presence of cortical microtubules (D) and first appearance of mitotic configurations (E, arrows
pointing to phragmoplast arrays), indicating the presence of cell division; and (F) 4 mm protruded radicle, with abundant cortical and mitotic

microtubules. Bars (A-E) 25 um, (F) 100 pm.

spindle, and phragmoplast) displayed. As for the shorter
radicles (1-3 mm), cells with cortical microtubular cyto-
skeleton were also abundantly present (Fig. 7F).

Effects of dehydration, pre-humidification, rehydration,
and PEG-treatment of M. truncatula seedlings on the
microtubular cytoskeleton

PEG-treated and untreated seedlings with a 2 mm
radicle were used to study the effect of dehydration, pre-
humidification and rehydration on the microtubular cyto-
skeleton in radicle cells. Incubation in PEG for 3 d caused
no changes in the microtubular cytoskeleton (compare
Fig. 8A and B). Dehydration of both untreated and PEG-
treated seedlings dismantled partially the well-established
microtubular cytoskeleton and led to the appearance of
tubulin granules (Fig. 8C, D). Pre-humidification worsened

the situation, with no MTs and only a few granules of
tubulin being detected in both untreated (Fig. 8E) and PEG-
treated (Fig. 8F) seedlings. Further, when pre-humidified
untreated seedlings were rehydrated for 24 h, some tubulin
granules could still be detected, but this was rather a rare
event and the prevalent situation was that of a total absence
of MTs and tubulin granules (Fig. 8G). However, a different
situation occurred in PEG-treated seedlings, which ex-
hibited, after 24 h of rehydration, a rebuilt, functional
microtubular cytoskeleton in the radicle cells, with both
interphase and mitotic configurations (Fig. 8H).

Discussion

The radicle length at which seedlings from orthodox seeds
lose DT varies among species, with 2 mm being reported for
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'A

Fig. 8. Fluorescence micrographs of radicle cells of seedlings of Medicago truncatula, with a radicle length of 2 mm, subjected to dehydration (with or
without PEG-treatment), pre-humidification and rehydration. Sections were labelled with a-tubulin antibody and with fluorescent secondary antibody.
(A) Control (before dehydration) showing abundant cortical MTs; (C, E, G) untreated seedlings. (C) Dehydration led to a decrease in the abundance of
MTs and appearance of tubulin granules (arrow); (E) after dehydration and pre-humidification, MTs disappeared totally and tubulin granules could
hardly be detected; (G) after dehydration, pre-humidification, and 24 h of rehydration, the total absence of MTs and tubulin granules. (B, D, F, H) PEG-
treated seedlings. (B) After incubation in PEG, the situation of the microtubular cytoskeleton remained unchanged, compared with the control; (D) after
dehydration, a decrease in the abundance of MTs and appearance of tubulin granules (arrow) was detected; (F) after dehydration and pre-humidification,
although some cells still exhibited tubulin granules (inset, arrow), the general picture was of total absence of MTs and tubulin granules; (H) after
dehydration, pre-humidification, and 24 h of rehydration, the normal situation was restored, with cortical MTs being seen throughout the radicle cells.
In addition, mitotic MTs were also observed. Bars (A, B, E, F, G, H) 50 um; (C) (both pictures), (D, F) (inset) 25 um.

tomato (Lin et al., 1998) and M. truncatula cv. Paraggio  the different experimental procedures adopted, especially
(Buitink et al., 2003), 1 mm for okra and mung bean (Lin the drying rate, are certainly another cause for the differ-
et al., 1998), and 0.5 mm for snow pea and cucumber (Lin  ences found. Decrease in DT before radicle protrusion
et al., 1998). Besides the expected variation among species,  appears to be a relatively rare event. It has been reported for
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coffee seeds (Ellis et al., 1991) and was found in the present
study. For instance, at 44 h of imbibition, 20% of the seeds
had germinated (Fig. 2), suggesting that at least the 80% that
had not germinated could still tolerate desiccation. How-
ever, only 40% were still desiccation tolerant. The drying
condition used to assess DT (43% RH; corresponding to
a water potential of —115 MPa) which led to a very fast
dehydration of the seeds certainly diminished the chances of
de novo synthesis of protective components. It has been
shown that slow water loss may allow protective changes to
occur, not only in germinating (Sun, 1999) but also in
developing orthodox seeds (Kermode and Finch-Savage,
2002), in somatic embryos (Senaratna et al., 1989) and in
the whole plant (Oliver et al., 1998), enabling them to
withstand subsequent severe dehydration. In the present
study such a slow (and limited) water loss was achieved by
subjecting the seedlings to a mild osmotic stress through
incubation in PEG solution (—1.8 MPa), resulting in re-
establishment of DT at high rates in seedlings with a pro-
truded radicle length of up to 2 mm. In a study with
M. truncatula cv. Paraggio, Buitink et al. (2003) showed
that during incubation in PEG, synthesis of possibly pro-
tective substances, such as sucrose and a dehydrin, occurred
cumulatively until 24 h, although water was lost only in the
first 6 h.

Radicles of untreated dried seedlings (2 mm long radi-
cles) had lost their viability, confirming the absence of DT.
In PEG-treated seedlings (also with 2 mm long radicles)
45% of the radicles were totally stained, and 36% only
partially. The sum of these values (81%) is very close to the
84% of DT shown by these seedlings, suggesting that the
partially stained radicles should also be considered viable.

Radicles of dry mature M. truncatula seeds contained
relatively high 4C DNA content (45%). This suggests that,
by the end of seed maturation, there are two blocks acting in
the cell cycle: one at the G,/M boundary, excluding those
cells with 4C nuclei progress to mitosis, and another at G,/S
keeping the cells with 2C nuclei at the pre-synthetic phase.
However, this is not the prevalent situation in orthodox
seeds, in which the quiescent embryo normally exhibits
most (or all) cells with a 2C DNA content, reflecting
a stringent arrest of the cell cycle at the pre-synthetic G
phase (Deltour, 1985; Bino et al., 1993).

The relationship between the progress of the cell cycle
and stress sensitivity in plants has not yet been clarified,
although it has been known for a long time that cells in G,
are more stress-sensitive than cells in G (Sybenga, 1972).
Several studies relating cell cycle and stress resistance in
seeds have shown that cells in G; are more resistant to
desiccation, cold- or heat-shock, storage, and radiation
(reviewed by Deltour, 1985; Saracco et al., 1995; Sliwinska,
2003). Deltour (1985) hypothesized that nuclei with a 2C
content might be more stress-resistant by offering a smaller
target for mutation-inducing factors than those with a 4C
content. However, very high 2C nuclei contents have also
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been found in mature embryos of intermediate and
recalcitrant seeds, such as coffee (da Silva, 2002), neem
(Azadirachta indica) (Sacandé, 2000), Castanea sativa
(Bino et al., 1993), and Inga vera (Faria et al., 2004).
Furthermore, seeds of the related tree species Acer
platanoides (desiccation-tolerant) and A. pseudoplatanus
(desiccation-sensitive) are shed with a similar 4C DNA
content in the radicles (38% and 37%, respectively)
(Finch-Savage et al., 1998). Thus, it appears that, in mature
seeds, DT is not correlated with the arrest of the cell cycle at
any particular DNA content.

In seedlings from orthodox seeds, DNA content and
DT normally show a high correlation (Sargent et al., 1981;
Dasgupta et al., 1982; Deltour, 1985; Osborne and
Boubriak, 1994; Osborne, 2000; Boubriak et al., 2000),
although the resumption of DNA synthesis is unlikely to
be the only effective agent in inducing the change from
the tolerant to the intolerant state (Dasgupta et al., 1982).
As DNA replication is, in general, a late event during ger-
mination, other processes may be more tightly linked to
the loss of DT, with DNA content playing only an additive
role in the increasing stress sensitivity upon germination
(Saracco et al., 1995; Boubriak et al., 1997). In PEG-treated
seedlings the greatest drop in DT occurred simultaneously
with the increase in 4C DNA content.

A second significant decrease in DT of PEG-treated
seedlings (from 33% to 5%) was observed between radicle
lengths of 3 mm and 4 mm. The DNA content remained
unaltered but a great number of cells had entered the M phase
of the cell cycle. Dividing cells are less tolerant to desicca-
tion than those that are elongating (Dasgupta et al., 1982).

Programmed cell death has been shown to occur in
different plant organs and tissues during normal develop-
ment (e.g. senescence of leaves and post-germinative
megagametophyte cell death) or induced by pathogens
and stress (Danon et al., 2000; He and Kermode, 2003).
Dehydration of desiccation-sensitive seeds (both recalci-
trant and germinating orthodox seeds) may lead to the
fractionation of DNA (Osborne and Boubriak, 1994;
Boubriak et al., 2000). In the present study, directly
dried seedlings with 2 mm long radicles displayed degra-
dation of nuclear DNA, which was visualized by the
formation of DNA ladders. The fragment lengths were
multiples of approximately 200 bp. These multimers, with
lengths of 170 to 200 bp, are generated by the cleavage of
the chromatin by endonucleases at internucleosomal sites
(Stein and Hansen, 1999). In desiccation-tolerant seeds
some DNA damage that occurs during dehydration or dry
storage may be repaired when water is again available
(Osborne, 2000). However, DNA laddering is an indicator
of the endpoint of the apoptotic process and cannot be
reversed (Boubriak ef al., 2000). It appears thus that the
weak signal of laddering shown by PEG-treated seedlings
possibly comes from the 16% that did not survive de-
hydration. To our knowledge this is the first time that
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DNA laddering is shown to occur during drying of in-
tolerant plant tissue.

It has been suggested that compounds such as sugars and
LEA proteins may act as protecting factors, stabilizing
cellular structures during drying (Crowe and Crowe, 1986;
Dure, 1997). It is also known that mild stresses can trigger
the synthesis of protective substances in plant tissues
(Farnsworth, 2000) and seedlings (Buitink et al., 2003). It
can thus be speculated that PEG incubation induced the
synthesis of nuclear proteins with a protective role of the
DNA. It is thought that nuclear desiccation-induced pro-
teins, such as QP47, isolated from Pisum sativum seeds,
protect DNA during desiccation (Chiatante et al., 1995).
Besides the synthesis of protectants, loss of water may also
cause reversible conformational changes in the DNA,
altering the recognition of specific base-sequence domains
by enzymes (Osborne and Boubriak, 1994; Osborne et al.,
2002), thereby hindering the action of the nucleases,
although this is yet to be proven in plant cells.

There were no MTs in radicle cells of dry M. truncatula
seeds. Only granules of tubulin were detected, as in seeds of
tomato (de Castro, 1998) and coffee (da Silva, 2002). Upon
germination free tubulin assembled into a cortical micro-
tubular cytoskeleton in cells of protruded radicles with
a length of 1 mm and 2 mm and, afterwards, together with
mitotic MTs. Hence, cell elongation alone was sufficient
for radicle protrusion and early radicle growth, with cell
division being additionally required later.

When desiccation-sensitive tissues are exposed to water
potentials below —2 MPa, dehydration may lead to the
loss of membrane organization, cellular integrity, and
degradation of macromolecules (Osborne and Boubriak,
1994). Around —5 MPa there is a general trend towards
contraction or dismantling of organelles (Walters et al.,
2002). In the present study, seedlings were exposed to
much more severe dehydration conditions (43% RH;
—115 MPa) and the consequence in both untreated and
PEG-treated seedlings was a decrease in abundance of
MTs and appearance of tubulin granules. The dismantling
of the cytoskeleton in seeds caused by dehydration has
also been reported for recalcitrant (desiccation-sensitive)
seeds, such as Quercus robur (Mycock et al., 2000),
Trichilia dregeana (Gumede et al., 2003) and Inga vera
(Faria et al., 2004). The subsequent pre-humidification
of the dried seedlings resulted in the total disappearance
of the MTs and a great reduction of tubulin granules.
Again, the decay of the microtubular cytoskeleton was
comparable in both untreated and PEG-treated seedlings.
The difference between untreated and PEG-treated seed-
lings only appeared when the pre-humidified seedlings
were rehydrated: PEG-treated seedlings were able to
reconstruct a functional microtubular cytoskeleton and
continue normal development, while untreated seedlings
showed a total absence of MTs and tubulin granules, and,
consequently, the ability to resume normal growth. It is

clear that the ability of PEG-treated seedlings to survive
dehydration, as far as the microtubular cytoskeleton is
concerned, did not rest on its protection during dehydration,
but on its reconstruction upon rehydration.

Desiccation-tolerant organisms must rely on one or both
of the following strategies: avoidance of the accumulation
of desiccation-induced damage, and the activation of repair
mechanisms upon rehydration (Buitink et al., 2002). The
present study showed that both strategies were distinctly
applied by seedlings in which DT was re-established by
PEG treatment. Nuclear DNA was kept intact during
dehydration, whilst MTs were dismantled and later rebuilt
upon rehydration.
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