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Abstract

The relationships between heat production, alternative

oxidase (AOX) pathway flux, AOX protein, and carbohy-

drates during floral development in Nelumbo nucifera

(Gaertn.) were investigated. Three distinct physiologi-

cal phases were identified: pre-thermogenic, thermo-

genic, and post-thermogenic. The shift to thermogenic

activity was associated with a rapid, 10-fold increase in

AOX protein. Similarly, a rapid decrease in AOX pro-

tein occurred post-thermogenesis. This synchronicity

between AOX protein and thermogenic activity con-

trasts with other thermogenic plants where AOX pro-

tein increases some days prior to heating. AOX protein

in thermogenic receptacles was significantly higher

than in post-thermogenic and leaf tissues. Stable oxy-

gen isotope measurements confirmed that the increased

respiratory flux supporting thermogenesis was largely

via the AOX, with little or no contribution from the

cytochrome oxidase pathway. During the thermogenic

phase, no significant relationship was found between

AOX protein content and either heating or AOX flux,

suggesting that regulation is likely to be post-trans-

lational. Further, no evidence of substrate limitation

was found; starch accumulated during the early stages

of floral development, peaking in thermogenic recep-

tacles, before declining by 89% in post-thermogenic

receptacles. Whilst coarse regulation of AOX flux

occurs via protein synthesis, the ability to thermoregu-

late probably involves precise regulation of AOX pro-

tein, most probably by effectors such as a-keto acids.

Key words: Alternative oxidase, alternative pathway

respiration, Nelumbo nucifera, plant thermogenesis, starch.

Introduction

Although body heat is usually associated with birds and
mammals, some plants are able to produce heat in their
flowers. Since the first report of thermogenesis in Arum by
Lamarck in 1778 (cited in Vanlerberghe and McIntosh,
1997), thermogenic activity has been reported in the re-
productive organs of a diverse range of plant taxa in-
cluding the Cycadaceae, the basal angiosperm family,
Nymphaceae, the monocot family, Araceae, and the eudicot
family, Nelumbonaceae. Heat production is assumed to be
of importance in the pollination biology of these species,
by scent volatilization (Meeuse, 1975) and/or by the pro-
vision of a thermal reward to insect pollinators (Seymour,
1997). Thermogenesis may also prevent low temperature
damage (Knutson, 1974) or ensure an optimum tempera-
ture for floral development (Seymour and Schultze-Motel,
1998). The capacity for respiratory heat production varies
markedly among thermogenic species, ranging from 2–
3 �C to almost 40 �C above ambient, for example, in the
inflorescences of Philodendron selloum (Nagy et al.,
1972). Respiratory heat production in most species is
unregulated; however, in a small number of species, such
as P. selloum, Symplocarpus foetidus, and the sacred lotus
Nelumbo nucifera, heat production is regulated so that
a constant temperature is maintained across a wide range
of ambient temperatures (Seymour, 2001). These thermo-
genic species are thus capable of thermoregulation,
sensing external temperature changes, and generating heat
at the cellular level.
The alternative respiratory pathway has long been

assumed to be the source of heating in thermogenic plants
due to the strong correlation between heat production and
cyanide-resistant respiration, where the alternative oxidase
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(AOX) is the terminal electron acceptor (Nagy et al.,
1972; Meeuse and Raskin, 1988). Inhibiting the cyto-
chrome oxidase (COX), however, shunts all electrons to
the AOX and thus does not allow accurate quantification
of actual in vivo AOX flux. In contrast, stable oxygen
isotope discrimination techniques enable quantification of
flux in the absence of inhibitors, and are now the accepted
methodology (Millar et al., 1995; Ribas-Carbo et al.,
1995; Robinson et al., 1995). To date, the role of the
AOX in heat production in vivo has only been confirmed
for one species, the sacred lotus (Watling et al., 2006),
and remains to be demonstrated for other thermogenic
species. The AOX is a nuclear-encoded protein that is
present as a homodimer in the inner mitochondrial mem-
brane of all plants (Vanlerberghe and McIntosh, 1997). In
addition, the AOX is also present in fungi, protists, and
many animal lineages (McDonald and Vanlerberghe,
2006). Electron transport to the AOX branches from
the main mitochondrial electron transport chain at ubi-
quinone and, in contrast to COX, is largely uncoupled
from ATP production and so energy is released as heat
(Moore and Siedow, 1991). In addition to the AOX, it
is also possible that heat production in plants could
result from the activity of plant uncoupling proteins
(pUCPs), which would result in high fluxes through the
COX pathway (Ito, 1999). In most plants, pUCPs are
present in much lower quantities than the mammalian
UCP1, which is responsible for non-shivering thermo-
genesis in brown adipose tissue (Vercesi et al., 2006).
However, in thermogenic skunk cabbage, S. foetidus,
two pUCPs, SfUCPA and SfUCPB, are expressed in
spadix tissue with higher expression of the SfUCPB form,
which lacks the fifth transmembrane domain (Ito, 1999).
It may be that both AOX and pUCPs play a role in
thermogenesis, depending on the species. In the sacred
lotus, however, alternative pathway flux increases signif-
icantly with heating and accounts for up to 75% of
electron transport in the hottest flowers. In contrast, there
is no relationship between COX flux and heating in
thermogenic lotus receptacles (Watling et al., 2006),
suggesting that pUCPs do not play a significant role in
this species.
The protogynous flowers of sacred lotus regulate their

temperature with remarkable precision (between 30 �C
and 35 �C) against fluctuations at ambient temperature
from 8 �C to 45 �C during the 2–4 d of floral receptivity
(Seymour and Schultze-Motel, 1998). These and other
thermoregulating plant tissues achieve constant temper-
atures without the complex neural and hormonal systems
found in some animals. Thus, thermoregulation in these
plants must occur at the cellular level, but almost nothing
is known about this regulation. In particular, in sacred
lotus, it is still unknown whether AOX regulation occurs
at the level of gene expression or is post-translational. In
the non-regulating thermogenic plants that have been

examined, AOX protein synthesis precedes thermogenic
activity by several days, suggesting post-translational
control of AOX (Rhoads and McIntosh, 1992; Chivasa
et al., 1999; Skubatz and Haider, 2004). Salicylic acid
(SA) treatment induces both AOX gene expression and
thermogenesis in pre-thermogenic tissues of Sauromatum
guttatum and Arum lilies (Raskin et al., 1987; Rhoads and
McIntosh, 1992); however, the role of SA in post-
translational regulation of the AOX is unclear. In contrast,
regulation of AOX activity in isolated mitochondria from
non-thermogenic plants has been investigated extensively
(Lambers et al., 2005; for a review, see Millenaar and
Lambers, 2003). Expression of AOX increases in non-
thermogenic plants exposed to high and low temperatures,
water stress, phosphate deficiency, SA, herbicides, and
inhibitors of the cytochrome pathway (Vanlerberghe and
McIntosh, 1992; Aubert et al., 1997; Finnegan et al.,
1997; Lennon et al., 1997; Ribas-Carbo et al., 2000,
2005a; Gonzalez-Meler et al., 2001; Huang et al., 2002;
Zottini et al., 2002; Gaston et al., 2003; Rachmilevitch
et al., 2007); however, changes in AOX protein levels are
not always correlated with activity in vivo (Lennon et al.,
1997; Millenaar et al., 2001; Gaston et al., 2003; Guy and
Vanlerberghe, 2005; Ribas-Carbo et al., 2005a; Vidal
et al., 2007). This may be because a number of factors
influence post-translational regulation of AOX activity,
including the redox state of the ubiquinone pool (Dry
et al., 1989), a regulatory disulphide bond that modulates
the redox state of AOX (Umbach and Siedow, 1993;
Umbach et al., 1994; Vanlerberghe et al., 1999), and
a-keto acids such as pyruvate (Millar et al., 1993) that can
further increase the activity of the reduced form (Rhoads
et al., 1998; Vanlerberghe et al., 1999). Based on
respiratory quotient studies, the respiratory substrate in
lotus appears to be carbohydrate (Seymour and Schultze-
Motel, 1998); however, substrate limitation of AOX
during thermogenesis has yet to be investigated.
Flowers of the sacred lotus have a developmental

sequence during which pre-thermogenic, thermogenic,
and post-thermogenic stages can be clearly distinguished.
This well-defined floral sequence was used to investigate
the extent to which thermogenesis in sacred lotus is
regulated by AOX protein synthesis, both throughout the
developmental sequence and during the thermogenic
stages. It was hypothesized that coarse regulation would
occur across the developmental sequence, such that AOX
protein levels would be significantly higher in thermo-
genic stages than in non-thermogenic stages, and that
regulation during thermogenesis would be post-trans-
lational, i.e. AOX protein levels would not change in
relation to the degree of heating. In this study, respiratory
flux, the contribution of AOX and COX to respiration,
AOX protein content, and the availability of respiratory
substrates in relation to heating were characterized during
floral development in sacred lotus.
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Materials and methods

Plant material

Lotus flowers (N. nucifera Gaertn.) were collected from an outdoor
pond in the Adelaide Botanic Gardens, South Australia, between
December and February, 2005–2006 and 2006–2007. Flowers were
categorized into stages according to Seymour and Schultze-Motel
(1998) with the addition of stages 0 and 4 to include the non-
thermogenic stages of floral development. The sequence of develop-
ment from stage 0 through to stage 4 is completed in 4–5 d. The
five stages, shown in Fig. 1, are: small green pre-thermogenic bud
(stage 0); larger bud with the petals closed and pointed (stage 1);
petals open by 2–12 cm, immature stamens closely appressed to the
receptacle (stage 2); petals horizontal revealing mature stamens
(stage 3); and petals and stamens senesce and abscize, leaving a
greening, post-thermogenic receptacle (stage 4). Thermogenesis occurs
during stages 1–3, with maximum heating during stage 2. The tem-
perature of each receptacle (tr) was measured with a needle thermo-
couple and a Fluke model 52 digital thermometer. The temperature of
a nearby non-thermogenic bud (tn) was also measured at this time. For
laboratory respiration and mass spectrometry measurements, flower
stems were cut underwater, ;15 cm below the flower base, and were
taken back to the laboratory in containers of pond water. Receptacles
for mitochondrial protein isolation were placed on ice and immediately
taken to the laboratory. A portion of each receptacle was excised for
carbohydrate analysis, frozen in liquid nitrogen, and stored at –80 �C
until analysis.

Respiration and discrimination analysis

Discrimination during respiration was determined in freshly
harvested lotus receptacles of each stage. The steady-state flux of
electrons through the cytochrome and alternative pathways in lotus
receptacles was determined using the oxygen isotope technique
established by Guy et al. (1989) and subsequently developed to
measure the gas phase on-line (Robinson et al., 1992, 1995). A full
review of the theoretical and practical aspects of this technology can
be found in Ribas-Carbo et al. (2005b).
Respiration rates and differential uptake of oxygen stable isotopes

were measured simultaneously in six sequential samples taken from
the gas phase surrounding the respiring receptacle tissue using the
method of Robinson et al. (1995) as described by Watling et al.
(2006). Small sections (;1.5 cm3) of freshly harvested lotus
receptacle tissue were weighed and placed inside a 25 ml gas-tight

syringe. Air samples (100 ll) were withdrawn from the syringe at
;6 min intervals and injected into a GC-MS system (NA 1500
Carlo-Erba Instrumentazione, Italy; Optima, Micromass, UK). The
fraction of O2 remaining and its isotopic composition were
measured, and the isotopic discrimination factors (D) and partition-
ing of electrons between the cytochrome and alternative pathways
were calculated essentially as previously described (Guy et al.,
1989; Henry et al., 1999). The r2 of all unconstrained linear
regressions between –ln f and ln (R/Ro), with a minimum of six data
points, was at least 0.991.
To establish the discrimination end-points for the alternative (Da)

and cytochrome (Dc) oxidases, receptacle tissue was vacuum
infiltrated with either 16 mM KCN or 25 mM SHAM [made from
a 1 M stock solution in 0.5% dimethylsulphoxide (DMSO)],
respectively, prior to measurement. The end-points obtained
(Dc¼17.062.0& and Da¼26.561.3&), based on stage 1 and 2
receptacles, were then used to calculate the flux through the
alternative and cytochrome pathways in uninhibited tissues as
described in Ribas-Carbo et al. (2005b). The reproducibility of
measurements of O2 concentration and fractionation was determined
using air samples withdrawn from the empty syringe and was 62%
and 60.01%, respectively.

Isolation of mitochondrial proteins

Isolation of washed mitochondrial protein was based on the method
of Day et al. (1985) with minor modifications. Briefly, receptacle
tissue was blended with cold grinding buffer [0.4 M mannitol,
25 mM MOPS-KOH, pH 7.2, 2 mM EDTA, 10 mM KH2PO4, 1%
(w/v) PVP-40, 20 mM ascorbic acid, 4 mM cysteine, 2 mM
pyruvate, 1% (w/v) bovine serum albumin (BSA), and 2% (w/v)
polyvinylpolypyrrolidone], filtered through two layers of Miracloth
(Merck, Australia), and centrifuged at 1000 g for 10 min. The
supernatant was then centrifuged for 20 min at 12 000 g. After
resuspension of the pellet in cold washing buffer [0.4 M mannitol,
25 mM MOPS-KOH, pH 7.2, 2 mM pyruvate, and 0.1% (w/v)
BSA], the sample was centrifuged at 1000 g for 10 min. The
supernatant was decanted and spun at 12 000 g for 20 min. The
mitochondrial fraction (pellet) was washed again with cold washing
buffer, spun at 1000 g for 10 min, and then the supernatant was
spun for a further 20 min at 12 000 g. The final mitochondrial
protein pellet was resuspended in ;250 ll of washing buffer.
Protein concentration was estimated by the method of Bradford
(1976) with BSA as the standard.

Fig. 1. Developmental sequence for sacred lotus. Stage 0, small green pre-thermogenic bud; stage 1, larger bud, petals closed and pointed, turning
pink at the tip; stage 2, petals fully pink, open between 2 cm and 12 cm, revealing the receptive stigmas and the immature stamens which are closely
appressed to the receptacle (inset); stage 3, petals horizontal, mature stamens falling away from the receptacle; and stage 4, petals and stamens
senesce and abscize, leaving a post-thermogenic yellow/green receptacle. The majority of heat is produced by the large, central receptacle. Heating
commences in stage 1, and continues through stages 2 and 3 (see Fig. 2A).
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SDS–PAGE and immunoblot analysis

Equal amounts of mitochondrial protein and sample buffer [100 mM
TRIS-HCl, pH 6.8, 2% (w/v) SDS, 20% (w/v) glycerol] were mixed
and boiled for 10 min. Separation of proteins by SDS–PAGE
analysis was performed by the method of Laemmli (1970) using
15% acrylamide resolving and 4% acrylamide stacking gels and the
Mini-PROTEAN 3 System (Bio-Rad Laboratories, Richmond, CA,
USA). An equal amount of mitochondrial protein (15 lg) was
loaded into each lane. The separated proteins were transferred to
a PVDF membrane (Millipore Immobilon 0.45 lm) using methods
similar to those described by Harlow and Lane (1988). Briefly, after
electrophoresis, the gels were washed for 10 min in transfer buffer
containing 23 mM TRIS, 192 mM glycine, 3.5 mM SDS, and 20%
(v/v) MeOH, and transferred to a PVDF membrane using a Mini
Trans-Blot Cell (Bio-Rad). The transfer occurred at a constant
current of 0.35 A for 1 h in transfer buffer. After transfer the
membrane was washed in TRIS-buffered saline-Tween (TBST)
buffer [137 mM NaCl, 2.5 mM KCl, 25 mM TRIS-HCl, pH 7.4,
and 1% (v/v) Tween-20] for 10 min. The membrane was covered in
5% skim milk TBST and rocked gently for 2 h to block non-
specific binding. Western blot analysis was used to detect AOX,
COX, and porin (an outer membrane voltage-dependent anion
channel protein not associated with the electron transport chain)
abundances using a 1:500 dilution of the monoclonal antibody
‘AOA’ raised against S. guttatum AOX (Elthon et al., 1989),
a 1:1000 dilution of anti-COXII (Agrisera) raised against subunit II
of cytochrome c oxidase, and a 1:10 000 dilution of monoclonal
antibody reacting with porin (PM035, Dr T Elthon, Lincoln, NE,
USA). To check for the presence of pUCP, membranes were probed
using pUCP antibodies raised against S. foetidus (Ito, 1999) and
soybean (Considine et al., 2001). After primary antibody incuba-
tion, the membrane was washed three times in TBST for 5 min and
incubated for 1 h in a 1:2000 dilution of secondary antibody with
a horseradish peroxidase (HRP) conjugate (Pierce goat anti-mouse
HRP or Pierce goat anti-rabbit HRP). The protein bands were
visualized using SuperSignal West Femto Maximum Sensitivity
Substrate (Pierce) by a Fluorchem 8900 Gel Imager (Alpha
Innotech, San Leandro, CA, USA) with subsequent analysis using
Fluorchem IS-8900 software (Alpha Innotech). A serial dilution was
carried out to ensure there was a linear relationship between the
amount of protein loaded and densitometry results. AOX and COX
protein levels are expressed relative to porin throughout.

Soluble carbohydrate and starch determination

Receptacle tissue from all developmental stages was assayed for
soluble carbohydrates and starch using a method similar to that of
Scholes et al. (1994) with modifications by Caporn et al. (1999).
Soluble carbohydrates were extracted by heating wedges of re-
ceptacle tissue (0.08–0.2 g FW) in aliquots of 80% ethanol
(solvent:tissue, 80:1, v/w) at 70 �C for 10 min. A subsample of the
total extract was dried under vacuum, and resuspended in 1 ml of
distilled water. Glucose (glc), fructose (fru), and sucrose (suc) were
determined sequentially following the addition of hexokinase
(0.5 U; Roche 1426362), phosphoglucose isomerase (0.6 U; Roche
127396), and invertase (8 U; Sigma I-4504), respectively. Absorbance
was measured at 340 nm using a SpectraMax Plus 384 microplate
reader (Molecular Devices, Sunnyvale, CA, USA). Starch was
determined from the remaining tissue which was ground in H2O,
autoclaved, and incubated with a-amylase (20 U; Sigma A-3176)
and amyloglucosidase (14 U; Fluka 10115) at 37 �C for 4 h to
convert starch to glc. An aliquot was then assayed as for glc above.

Statistical analysis

Changes in respiratory pathways and relative AOX and COX
proteins with respect to developmental stage were investigated by

one-way analysis of variance (ANOVA) using JMP 5.1 (SAS
Institute Inc.). Where ANOVA revealed significant interactions,
Tukey HSD post hoc tests were applied in order to identify sig-
nificantly different means. Data were tested for normality using the
Shapiro–Wilk W test. Bartlett’s test was applied to ensure homo-
geneity of variances. Respiratory and AOX flux data were log or arc
sin transformed, respectively, to satisfy the assumptions of ANOVA.
Starch and soluble carbohydrate data did not meet the assumptions
of ANOVA and were analysed using the non-parametric Kruskal–
Wallis test using JMP 5.1, and multiple comparisons were per-
formed using the Nemenyi test (Zar, 1999). Significant differences
are at P <0.05, unless otherwise stated.

Results

Respiratory flux and temperature across lotus
developmental stages

Five distinct morphological phases were identified in the
development of N. nucifera flowers (Fig. 1), that are simi-
lar to those previously reported (Seymour and Schultze-
Motel, 1998). Thermogenic activity was detected in stages
1–3, but not in either stage 0 (pre-thermogenic) or stage 4
(post-thermogenic) receptacles. Mean receptacle heating
increased up to stage 2 and then decreased to stage 4. Sig-
nificantly more heating was observed in stage 2 recep-
tacles than pre- and post-thermogenic receptacles (Fig. 2A,
ANOVA, F4,58¼10.5498, P <0.0001).
Total respiratory flux in receptacles increased from stage

0 to stage 2, followed by a decrease to stage 4 (Fig. 2B).
Mean total respiration in stage 2 receptacles (0.0621 lmol
O2 g FW�1s�1) was 2–3 times higher than that in stages
0 and 4 (ANOVA, F4,59¼15.9064, P <0.0001). Mean
total respiration in stage 1 was significantly higher than in
stage 4 receptacles. Mean flux through the AOX, mea-
sured using stable oxygen isotopes, showed a similar
pattern of response across development to that observed
for total respiration (Fig. 2B). Mean AOX flux increased
>4-fold between stages 0 and 1, remained significantly
high during stage 2, and then decreased to stage 4
(ANOVA, F4,59¼3.6883, P¼0.0096). Mean AOX flux
was 19% of total respiration in stage 0, increasing to
>40% in stage 2 (Table 1). By stage 4 the proportion of
the respiratory flux attributed to AOX had declined to
34%. Across all stages, the contribution of AOX flux to
total respiration ranged from 0% to 93%, with the largest
contributions and range in stage 2 receptacles (Table 1). In
contrast, flux through the COX pathway exhibited much
less variation during floral development than AOX (cf. Fig
2B), although COX flux declined significantly between
stages 2 and 4 (ANOVA, F4,59¼6.41, P¼0.0002).
There was a significant positive relationship between

the amount of heating in thermogenic lotus receptacles (tr–
tn) and both total respiration (r2¼0.47, P¼0.0012, data
not shown) and AOX flux (r2¼0.43, P <0.0001, Fig. 3A),
but not with COX flux (r2¼0.16, P >0.05, data not
shown).
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Synthesis of AOX protein during development in
lotus receptacles

The presence of an ;32 kDa protein was detected in
receptacle tissues of N. nucifera using the AOA mono-
clonal antibody against the AOX protein (Fig. 4A).

Relative AOX (i.e. AOX/porin) increased 10-fold in
receptacles between stages 0 and 1, remained high during
thermogenic stages 1–3, and then decreased significantly
in post-thermogenic receptacles (Fig. 4B). Relative AOX
was significantly higher in the three thermogenic stages, 1,
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Fig. 2 Changes in (A) extent of heating, (B) total respiratory flux (open
bars), and flux through the alternative pathway (AOX, black bars), and (C)
flux through the cytochrome (COX) pathway, in sacred lotus receptacle
tissue throughout the developmental sequence. Heating was determined in
the field as the difference in temperature between the measured receptacle
(tr) and a nearby, non-thermogenic receptacle (tn). Significant differences
are indicated by different letters. Data are means 6SE, n¼5–30.

Table 1. Mean proportion and range (%) of respiratory flux
through the alternative (AOX) pathway of sacred lotus recep-
tacles for each developmental stage

Stage Mean contribution
of AOX to total
flux (% 6SE)

Range of AOX
contributions
to flux (%)

0 (pre-thermogenic) 19.167.5 1–42
1 39.867.2 12–74
2 41.164.2 11–93
3 37.568.8 6–69
4 (post-thermogenic) 33.666.2 0–63
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Fig. 3. Relationship between the degree of heating in thermogenic lotus
receptacle (stages 1–3) and (A) AOX flux through the pathway, and (B)
the relative amount of AOX protein. Regressions, where significant, are
plotted (AOX flux, r2¼0.43, y¼0.269e0.451x–0.0225, P <0.0001). One
outlier (*) is excluded from the regression in (A) (if included, AOX
flux, r2¼0.37, y¼0.0.0371e0.0333x–0.0225, P <0.0003). Heating was
determined in the field as the difference in temperature between the
measured receptacle (tr) and a nearby, non-thermogenic receptacle (tn).
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2, and 3, than in the non-thermogenic stages, 0 and 4,
which were essentially the same (Fig. 4B; ANOVA, F4,39¼
7.84, P¼0.0001). When amounts of mitochondrial protein
from leaf tissue (non-thermogenic) were compared with
receptacle protein, AOX was below detectable levels.
During thermogenic stages there was no correlation be-
tween the amount of AOX protein and the magnitude of
receptacle heating (r2¼0.09, P >0.05, Fig. 3B) or AOX
flux (r2¼0.03, P >0.05, data not shown). The relative
concentration of COX (i.e. COX/porin) in receptacle mito-
chondria did not change significantly during floral devel-
opmental in N. nucifera (Fig. 5A, B; ANOVA, F5,39¼
0.17, P¼0.9541). Immunoblots of lotus receptacle mito-
chondria were probed with two different pUCP antisera,
raised against S. foetidus (thermogenic skunk cabbage) and
soybean, but no pUCPs were detected (data not shown).

Soluble carbohydrates and starch

There were significant changes in receptacle starch con-
centration during floral development (Fig. 6A, Kruskal–
Wallis, v24¼25.81, P <0.0001). Starch concentration of
receptacles increased by 50% between stage 0 and stage 2
(mean stage 2, 11.29 mg g FW�1), although this differ-
ence was not significant (Fig. 6A). Mean starch concen-

tration was significantly higher in the three thermogenic
stages (stages 1–3) than in stage 4 receptacles. Starch con-
centration declined by 89% between stage 2 and the post-
thermogenic stage 4 (mean stage 4, 1.24 mg g FW�1).
During thermogenic stages there was no correlation
between starch concentration and the magnitude of re-
ceptacle heating (r2¼0.11, P >0.05, data not shown).
In contrast to starch, total soluble carbohydrate concen-

tration (suc+glc+fru) did not change over the develop-
mental sequence (data not shown). There were, however,
significant changes in the composition of the soluble
carbohydrate pool during development. Most notably,
sucrose content was highest and similar in non-thermo-
genic stages (0 and 4), with mean concentrations of
2.5860.11 and 2.4560.11 mg g FW�1, respectively (Fig.
6B, Kruskal–Wallis, v24¼14.01, P¼0.007). In contrast to
suc, glc+fru concentration was lowest in stage 0, and
increased significantly throughout thermogenesis, peaking
in stage 3 receptacles (Fig. 6C, Kruskal–Wallis, v24¼
16.31, P¼0.003).

Discussion

A significant relationship was observed between receptacle
heat production and AOX flux during floral development
in N. nucifera. Heat production was not observed until

Fig. 4. A representative western blot of AOX protein detection (A) and
relative amounts of AOX/porin (B) for mitochondria isolated from
sacred lotus receptacle tissue throughout the developmental sequence.
Significant differences are indicated by different letters. Data in (B) are
means 6SE, n¼5–21.

Fig. 5. A representative western blot of COX protein detection (A) and
relative amounts of mitochondrial COX/porin (B) for mitochondria
isolated from sacred lotus receptacle tissue throughout the developmen-
tal sequence. Means were not significantly different (see text). Data in
(B) are means 6SE, n¼5–21.
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stage 1, increased through stage 2, declined through stage
3, and had ceased by stage 4 (Figs 1, 2A). Total res-
piration increased up to stage 2, and then declined to stage
4 in line with the pattern of heating (Fig. 2A, B). This
is similar to previously reported patterns of heating and
total respiration during floral development of this species
(Seymour and Schultze-Motel, 1996). Stable oxygen iso-
tope measurements confirmed that the increased respira-
tory flux supporting heat production was largely via the
AOX pathway, with little or no contribution from the
COX pathway (Figs 2, 3A). During stage 2, AOX flux
accounted for between 11% and 93% of total respiratory
flux, depending on the amount of heating (Table 1). This
contribution is somewhat higher than the maximum
reported in a previous report (Watling et al., 2006), and
confirms that sacred lotus has the highest proportion of
AOX flux of any plant measured to date (cf. Robinson
et al., 1995; Ribas-Carbo et al., 2005b). The high mean
AOX flux during heating further supports the previous
conclusion that pUCPs are unlikely to be significantly
involved in heat production in the sacred lotus (Watling
et al., 2006). This is also strengthened by the stable COX
flux levels during heating which would be predicted to
increase if pUCPs played a role in heating in this species.
Furthermore, efforts to detect pUCPs in these sacred lotus
receptacles using S. foetidus or soybean antibodies have
so far been unsuccessful (our data; K Ito and Y Onda,
personal communication). Based on these respiratory fluxes,
it is calculated (according to Seymour and Schultze-Motel,
1998) that receptacle AOX is responsible for approxi-
mately half the total heat produced by the thermogenic
flowers. The measurements of AOX flux in sacred lotus
petals suggest that these tissues, which also show very
high AOX flux, account for the remaining heat observed
in the flower (NM Grant et al., unpublished data). This
concurs with Seymour and Schultze-Motel’s analysis of
total respiration in the different flower parts (Seymour and
Schultze-Motel 1998).
The importance of the AOX in heat production in this

species was further confirmed by measurements of AOX
protein content of receptacles during the developmental
sequence. AOX protein content in the thermogenic stages
1–3 was at least 10-fold higher than that of stage 0 and 4
receptacles (Fig. 4), and AOX in all receptacles was
higher than that found in sacred lotus leaves. Assuming
that sacred lotus leaves contain similar levels of AOX
protein to that found in non-thermogenic tissues in other
species, the levels found in these thermogenic receptacles
are extremely high. This is further supported by the fact
that the amount of protein loaded onto the gels was 4–6
times lower than those typically used in other studies to
detect AOX by western blotting (Ducos et al., 2001;
Gonzalez-Meler et al., 2001). The synchronicity between
the onset of thermogenic activity and the increase in
expression of AOX protein in stage 1 receptacles of

Fig. 6. Changes in tissue concentrations of (A) starch, (B) suc, and (C)
glc and fru for sacred lotus receptacles throughout the developmental
sequence. Significant differences are indicated by different letters. The
asterisk in (B) indicates significance at P <0.06. Data are means 6SE,
n¼4–28 samples. A smaller subset of the starch samples were analysed
for soluble carbohydrates.
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sacred lotus contrasts with the accumulation of AOX
protein 3 d prior to the thermogenic burst in S. guttatum
(Rhoads and McIntosh, 1992), and Arum italicum (Chiv-
asa et al., 1999), and up to 8 d prior to that in Victoria
cruziana (Skubatz and Haider, 2004). There was also
synchronicity between the loss of thermogenic activity
and AOX protein in sacred lotus receptacles at stage 4
(Figs 2, 4). Although low by comparison with thermo-
genic tissues, mass specific rates of AOX flux during
stages 0 and 4 are comparable with those observed in non-
thermogenic plants, such as soybean cotyledons (Ribas-
Carbo et al., 2000) which are likely to contain similar
levels of AOX protein. Such rates, however, are in-
sufficient to produce measurable heating of tissues
(Breidenbach et al., 1997; see Fig. 2A)
Although there was a tight relationship between the

presence of AOX protein and the ability to thermoregulate
across the developmental series, within the thermoregula-
tory stages 1–3 no quantitative relationship was found
between AOX protein content and thermogenic activity
(Fig. 3B) or AOX flux, suggesting that regulation of
thermogenesis is post-translational. Thus, fine regulation
of AOX activity during the thermogenic stages (Fig. 3A)
is likely to occur within the mitochondrial electron trans-
port chain. For example, AOX activation can be modu-
lated either through the reduction status of a disulphide
bond or via effectors, such as pyruvate and other a-keto
acids (Millar et al., 1993; Umbach et al., 1994; Vanler-
berghe et al., 1999). In many plants AOX is only active
once the Q pool reaches 40–50% reduction (Moore et al.,
1988; Dry et al., 1989); however, in thermogenic Arum
mitochondrial AOX activity occurs at very low Q pool
reduction states (Moore and Siedow, 1991), suggesting
that this mechanism may not be responsible for modulat-
ing AOX activity in thermogenic species. Previously it
has been reported that isolation of mitochondria results in
complete oxidation of AOX protein, making it difficult to
assess the reduction state of the AOX in vivo (Umbach
and Siedow, 1997). However, all detectable AOX protein
from the mitochondrial preparations of sacred lotus re-
ceptacles was present in the reduced form, making it
unlikely that the AOX reduction state is a regulatory
mechanism (see also Onda et al., 2008). Thus, it seems
likely that regulation of AOX in sacred lotus receptacles is
occurring via effectors such as a-keto acids.
Starch concentrations in sacred lotus receptacles peaked

in stage 2 and were largely exhausted by stage 4, making
this the likely substrate for thermogenesis (Fig. 6A). An
earlier study showed that starch was present in the paren-
chyma tissues of lotus receptacles during stage 2, and had
disappeared by the end of stage 3 (Vogel and Hadacek,
2004). Rapid loss of starch during thermogenesis has also
been shown in Arum maculatum (ap Rees et al., 1977).
The respiratory quotient for sacred lotus receptacles is also
reported as 1, consistent with carbohydrate being the

respiratory substrate (Seymour and Schultze-Motel, 1998).
There was no evidence that carbohydrate concentration
limited thermogenesis throughout the thermoregulatory
period in sacred lotus; however, the possibility that starch
was limiting respiration towards the end of this phase
cannot be ruled out. High concentrations of sucrose in
stage 0 are consistent with import of carbohydrates from
other organs for the development of fuel reserves to sup-
port subsequent thermogenesis (Fig. 6B). This is further
supported by the decrease in sucrose concentration be-
tween stage 0 and stage 1, and the concurrent increase in
starch concentration between these two stages. It is pos-
sible that this early sucrose import and starch accumula-
tion is not sufficient to support respiration for the entire
thermogenic period, as sucrose concentrations increased,
although not significantly from stages 1 to 3. The high con-
centration of sucrose in stage 4 receptacles was coupled
with a significant decrease in starch. This is most probably
explained by the transformation in receptacle function that
occurs during this post-thermogenic stage, when recep-
tacles become photosynthetic, presumably to support fruit
and seed development.

Conclusion

Thermogenic activity in sacred lotus receptacles is me-
diated by the AOX pathway fuelled by starch. Three
distinct physiological phases were identified during de-
velopment of sacred lotus flowers. The shift from
pre-thermogenic stage 0 to thermogenic stage 1 was
associated with a rapid increase in AOX protein. The
transition from thermogenic stage 3 to post-thermogenic
flowers was characterized by a similarly rapid decrease in
AOX protein content. During the thermogenic phase
(stages 1–3), heat production was correlated with AOX
flux but, as AOX protein remained constant during this
period, regulation is likely to be post-translational. The
synchronicity between AOX protein content and thermo-
genic activity contrasts with other thermogenic plant
species where AOX protein increases some days prior to
the onset of thermogenesis.

Acknowledgements

Thanks are due to the Adelaide Botanical Gardens for access to
their lotus pond, Professor Kikukatsu Ito and Yoshi Onda for advice
and helpful discussions, David Bruce, Tiffany Barlow, and Layla
Tucker for technical assistance, and David Hollingworth for the
photography and image layout in Fig. 1. AOX antibody was kindly
supplied by Assistant Professor Kathleen Soole (Flinders Univer-
sity, South Australia), Professor James Whelan (University of
Western Australia, Western Australia) provided porin and soy
pUCP antibodies, and Professor Kikukatsu Ito (Iwate University,
Japan) provided the S. foetidus pUCP antibody. This work was sup-
ported by the Australian Research Council (grant no. DP0451617),
and NMG is in receipt of an APA studentship.

712 Grant et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/59/3/705/576018 by guest on 13 M

arch 2024



References

ap Rees T, Wright BW, Fuller WA. 1977. Measurements of starch
breakdown as estimates of glycolysis during thermogenesis by the
spadix of Arum maculatum L. Planta 134, 53–56.

Aubert S, Bligny R, Day DA, Whelan J, Douce R. 1997.
Induction of alternative oxidase synthesis by herbicides inhibiting
branched-chain amino acid synthesis. The Plant Journal 11, 649–
657.

Bradford MM. 1976. A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein–dye binding. Analytical Biochemistry 72,
248–254.

Breidenbach RW, Saxton MJ, Hansen LD, Criddle RS. 1997.
Heat generation and dissipation in plants: can the alternative
oxidative phosphorylation pathway serve a thermoregulatory role
in plant tissues other than specialized organs? Plant Physiology
114, 1137–1140.

Caporn SJM, Brooks Al, Press MC, Lee JA. 1999. Effects of
long-term exposure to elevated CO2 and increased nutrient supply
on bracken (Pteridium aquilinum). Functional Ecology 13, 107–
115.

Chivasa S, Berry JO, ap Rees T, Carr JP. 1999. Changes in gene
expression during development and thermogenesis in Arum.
Australian Journal of Plant Physiology 26, 391–399.

Considine MJ, Daley DO, Whelan J. 2001. The expression of
alternate oxidase and uncoupling protein during fruit ripening in
mango. Plant Physiology 126, 1619–1629.

Day DA, Neuburger M, Douce R. 1985. Biochemical character-
ization of chlorophyll-free mitochondria from pea leaves. Austra-
lian Journal of Plant Physiology 12, 219–228.

Dry IB, Moore AL, Day DA, Wiskich JT. 1989. Regulation of
alternative pathway activity in mitochondria; non-linear relation-
ship between electron flux and the redox poise of the quinone
pool. Archives of Biochemistry and Biophysics 273, 148–157.

Ducos E, Touzet P, Boutry M. 2001. The male sterile G cytoplasm
of wild beet displays modified mitochondrial respiratory com-
plexes. The Plant Journal 26, 171–180.

Elthon TE, Nickels RL, McIntosh L. 1989. Mitochondrial events
during development of thermogenesis in Sauramatum guttatum
(Schott). Planta 180, 82–89.

Finnegan PM, Whelan J, Millar AH, Zhang Q, Smith MK,
Wiskich JT, Day DA. 1997. Differential expression of the
multigene family encoding the soybean mitochondrial alternative
oxidase. Plant Physiology 114, 455–466.

Gaston S, Ribas-Carbo M, Busquets S, Berry JA, Zabalza A,
Royulea M. 2003. Changes in mitochondrial electron partitioning
in response to herbicides inhibiting branched-chain amino acid
biosynthesis in soybean. Plant Physiology 133, 1351–1359.

Gonzalez-Meler MA, Giles L, Thomas RB, Siedow JN. 2001.
Metabolic regulation of leaf respiration and alternative pathway
activity in response to phosphate supply. Plant Cell and
Environment 24, 205–215.

Guy R, Berry JA, Fogel ML, Hoering TC. 1989. Differential
fractionation of oxygen isotopes by cyanide-resistant and cyanide-
sensitive respiration in plants. Planta 177, 483–491.

Guy R, Vanlerberghe GC. 2005. Partitioning of respiratory
electrons in the dark leaves of transgenic tobacco with modified
levels of alternative oxidase. Physiologia Plantarum 125, 171–
180.

Harlow E, Lane D. 1988. Antibodies: a laboratory manual. Cold
Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Henry B, Atkin OK, Day DA, Millar AH, Menz RI,
Farquhar G. 1999. Calculation of the oxygen isotope discrimin-
ation factor for studying plant respiration. Australian Journal of
Plant Physiology 26, 773–780.

Huang X, Rad U, Durner J. 2002. Nitric oxide induces
transcriptional activation of the nitric oxide-tolerant alternative
oxidase in Arabidopsis suspension cells. Planta 215, 914–923.

Ito K. 1999. Isolation of two distinct cold-inducible cDNAs
encoding plant uncoupling proteins from the spadix of skunk
cabbage (Symplocarpus foetidus). Plant Science 149, 167–173.

Knutson RM. 1974. Heat production and temperature regulation in
eastern skunk cabbage. Science 186, 746–747.

Laemmli UK. 1970. Cleavage of structural proteins during the
assembly of the head of bacteriophage T4. Nature 227, 680–685.

Lambers H, Robinson SA, Ribas-Carbo M. 2005. Regulation of
respiration in vivo. In: Lambers H, Ribas-Carbo M, eds. Plant
respiration: from cell to ecosystem. Advances in photosynthesis
and respiration, Vol. 18. Dordrecht: Springer, 1–15.

Lennon AM, Neuenschwander UH, Ribas-Carbo M, Giles L,
Ryals JA, Siedow JN. 1997. The effects of salicylic acid and
tobacco mosaic virus infection on the alternative oxidase of
tobacco. Plant Physiology 115, 783–791.

McDonald AE, Vanlerberghe GC. 2006. Origins, evolutionary
history, and taxonomic distribution of alternative oxidase and
plastoquinol terminal oxidase. Comparative Biochemistry and
Physiology D—Genomics and Proteomics 1, 357–364.

Meeuse BJD. 1975. Thermogenic respiration in aroids. Annual
Review of Plant Physiology and Plant Molecular Biology 26,
117–126.

Meeuse BJD, Raskin I. 1988. Sexual reproduction in the arum lily
family, with emphasis on thermogenicity. Sexual Plant Repro-
duction 1, 3–15.

Millar AH, Atkin OK, Lambers H, Wiskich JT, Day DA. 1995.
A critique of the use of inhibitors to estimate partitioning of
electrons between mitochondrial respiratory pathways in plants.
Physiologia Plantarum 95, 523–532.

Millar AH, Wiskich JT, Whelan J, Day DA. 1993. Organic acid
activation of the alternative oxidase of plant mitochondria. FEBS
Letters 329, 259–262.

Millenaar FF, Gonzalez-Meler MA, Fiorani F, Welschen R,
Ribas-Carbo M, Siedow JN, Wagner AM, Lambers H. 2001.
Regulation of alternative oxidase activity in six wild mono-
cotyledonous species. An in vivo study at the whole root level.
Plant Physiology 126, 259–262.

Millenaar FF, Lambers H. 2003. The alternative oxidase: in vivo
regulation and function. Plant Biology 5, 2–15.

Moore AL, Dry IB, Wiskich JT. 1988. Measurement of the redox
state of the ubiquinone pool in plant mitochondria. FEBS Letters
235, 76–80.

Moore AL, Siedow JN. 1991. The regulation and nature of the
cyanide-resistant alternative oxidase of plant mitochondria. Bio-
chimica et Biophysica Acta 1059, 121–140.

Nagy KA, Odell DK, Seymour RS. 1972. Temperature regulation
by the inflorescence of Philodendron. Science 178, 1195–1197.

Onda Y, Kato Y, Abe Y, et al. 2008. Pyruvate-sensitive AOX
exists as a reduced monomer in the thermogenic spadix of the
skunk cabbage, Symplocarpus foetidus. FEBS Letters (in press).

Rachmilevitch S, Xu Y, Gonzalez-Meler MA, Huang B,
Lambers H. 2007. Cytochrome and alternative pathway activity
in roots of thermal and non-thermal Agrostis species in response
to high soil temperature. Physiologia Plantarum 129, 163–174.

Raskin I, Ehmann A, Melander WR, Meeuse BJD. 1987.
Salicylic acid: a natural inducer of heat production in Arum lilies.
Science 237, 1601–1602.

Rhoads DM, McIntosh L. 1992. Salicylic acid regulation of
respiration in higher plants: alternative oxidase expression. The
Plant Cell 4, 1131–1139.

Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Rauch GS,
Siedow JN. 1998. Regulation of the cyanide-resistant alternative

Thermogenesis, AOX flux, protein, and starch in sacred lotus 713

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/59/3/705/576018 by guest on 13 M

arch 2024



oxidase of plant mitochondria. Journal of Biological Chemistry
273, 30750–30756.

Ribas-Carbo M, Berry JA, Yakir D, Giles L, Robinson SA,
Lennon AM, Siedow JN. 1995. Electron partitioning between
the cytochrome and alternative pathways in plant mitochondria.
Plant Physiology 109, 829–837.

Ribas-Carbo M, Robinson SA, Giles L. 2005b. The application of
the oxygen-isotope technique to assess respiratory pathway par-
titioning. In: Lambers H, Ribas-Carbo M, eds. Plant respiration:
from cell to ecosystem. Advances in photosynthesis and respira-
tion, Vol. 18. Dordrecht: Springer, 31–42.

Ribas-Carbo M, Robinson SA, Gonzalez-Meler MA,
Lennon AM, Giles L, Siedow JN, Berry JA. 2000. Effects of
light on respiration and oxygen isotope fractionation in soybean
cotyledons. Plant, Cell and Environment 23, 983–989.

Ribas-Carbo M, Taylor LP, Giles L, Busquets S, Finnegan PM,
Day DA, Lambers H, Medrano H, Berry JA, Flexas J. 2005a.
Effect of water stress on respiration in soybean leaves. Plant
Physiology 139, 466–473.

Robinson SA, Ribas-Carbo M, Yakir D, Giles L, Reuveni Y,
Berry JA. 1995. Beyond SHAM and cyanide—opportunities for
studying the alternative oxidase in plant respiration using oxygen-
isotope discrimination. Australian Journal of Plant Physiology
22, 487–496.

Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB,
Siedow JN, Berry JA. 1992. Measurements of the engagement
of cyanide-resistant respiration in the Crassulacean acid metabo-
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