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Stomata are the pores on a leaf surface through which plants

regulate the uptake of carbon dioxide (CO2) for photosyn-

thesis against the loss of water via transpiration. Turgor

changes in the guard cells determine the area of stomatal

pore through which gaseous diffusion can occur, thus

maintaining a constant internal environment within the leaf

(Gregory et al., 1950). Stomata first occurred in the fossil

record ;400 million years ago (Ma), and are largely identical

in form to the stomatal complexes of many extant plants,

illustrating their effectiveness and importance to terrestrial

plants (Edwards et al., 1998). Stomatal control is critical to

a plant’s adaptation to its environment; it is this fundamental

importance that has led to a wealth of stomatal research

ranging in scale from biomolecular analysis to landscape

processes (e.g. Gedney et al., 2006; Hu et al., 2010).

The first issue of Journal of Experimental Botany, pub-

lished 60 years ago, contained four papers relating to

stomatal function. These included an analysis by Heath of

the effects of atmospheric CO2 concentration ([CO2]) on

stomatal aperture and conductance; an area of research that

is increasingly relevant to our understanding of the past and

prediction of future vegetation responses to atmospheric

composition. Heath (1950) was the first to observe that

reductions in [CO2] below ambient levels induced stomatal

opening, an ecophysiological response of great interest, and

that the site of CO2 sensing was most probably in the

substomatal cavity and not the guard cells. Stomatal research

has become vastly important to crop production, biodiversity

responses, and hydrology (particularly in terms of ‘run-off’)

with respect to rising atmospheric [CO2], changing water

regimes, and growing populations. As our understanding of

stomatal physiology develops, the role of stomata in the

evolution of terrestrial vegetation and development of the

terrestrial landscape and atmospheric composition is becom-

ing increasingly evident, alongside the use of fossil stomata as

palaeo-proxies of past atmospheres (e.g. McElwain et al.,

2004; Berry et al., 2010; Smith et al., 2010).

The stomatal control responses of plants consist of ‘short-
term’ stomatal aperture changes in response to availability of

water, light, temperature, wind speed, and carbon dioxide, and

also ‘longer term’ changes in stomatal density that set the

limits for maximum stomatal conductance in response to

atmospheric [CO2], light intensity/quality, and root-to-shoot

signals of water availability (Schoch et al., 1980, 1984; Davies

et al., 2000; Casson et al., 2009). Stomatal control determines

the water use efficiency (WUE) of a plant by optimizing water

lost against carbon gained. Additionally, the stomatal control

mechanisms employed by a plant species will determine: the

risk of xylem embolism by reducing the probability of

cavitation through stomatal closure during episodes of high

transpirative demand (Brodribb and Jordan, 2008; Meinzer

et al., 2009); leaf temperature and resistance to heat stress

(Srivastava et al., 1995; Jones et al., 2002); tolerance of toxic

atmospheric gases (Mansfield and Majernik, 1970); nutrient

uptake via promotion of root mass flow (Van Vuuren et al.,

1997); and the maximum rate of photosynthesis (Körner et al.,

1979). Those plant species with more effective stomatal control

will be expected to be more successful than those with less

effective stomatal control. However, not all plant species, or

individuals within a species, possess equally effective stomatal

control, in the setting of either stomatal numbers or the

regulation of stomatal aperture (i.e. speed and ‘tightness’ of

closure). Given that any trait that confers a selective advan-

tage is likely to become universal within a population

(McNeilly, 1968), it may be reasonable to assume that

stomatal control incurs certain ‘costs’, and that these costs

have played a significant role in plant evolution over the last

400 million years.

The origination of major plant groups, and morphologi-

cal advances such as the development of planate leaves,

coincide with periods of ‘low’ atmospheric [CO2] (Fig. 1)

(Woodward, 1998; Beerling et al., 2001). The reduced

availability of the substrate for photosynthesis is predicted

to be compensated by increases in the carboxylation

efficiency of RubisCO and enhanced stomatal conductance

to maintain CO2 uptake during periods of low [CO2]

(Woodward, 1998; Franks and Beerling, 2009). This ele-

vated stomatal conductance incurs higher rates of water loss

and associated risks of desiccation and xylem embolism, in

addition to the metabolic costs of enhanced construction of

stomatal complexes. It is these costs during periods of low

[CO2] that may serve as evolutionary tipping points, where

species with more efficient and effective stomata and

hydraulic systems are favoured (Robinson, 1994; Brodribb
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and Jordan, 2008; Brodribb and Feild, 2010). The localized

availability of water may also have played a determining

role during these periods of low [CO2]. A high water

availability aquatic habitat is considered a likely ecologi-

cal niche for early angiosperms, prior to their later

diversification and colonization of lower water availability

habitats in the Late Cretaceous (100–65 Ma) (Feild et al.,

2004; Saarela et al., 2007).

In extant plants, photosynthetic capacity is associated

with maximum stomatal conductance (Körner et al., 1979;
Hetherington and Woodward, 2003), and this is observed

across an evolutionary range of gymnosperms and angio-

sperms (cycads, Ginkgoaceae, conifers, dicotyledons, and

monocotyledons) (Fig. 2), suggesting that maximal photo-

synthetic rates sustained by higher stomatal conductance

may have served as a driver of plant evolution throughout

earth history (Robinson, 1994; Franks and Beerling, 2009).

It is unclear whether this evolution is driven exclusively by

[CO2] or the photosynthetic availability of CO2 determined

by the atmospheric ratio of CO2 to oxygen (O2). RubisCO
displays an affinity for both CO2 and O2 as part of the

competing processes of photosynthesis and photorespira-

tion (Miziorko and Llorimer, 1983). The origination and

radiation of key plant groups such as ferns, cycads,

Ginkgoaceae, and angiosperms occur during periods where

the CO2:O2 ratio is less favourable towards photosynthesis,

and atmospheric O2 concentration ([O2]) is high or rising

(Fig. 1). Levels of atmospheric O2 may also have driven
plant evolution via respiratory effects on stomatal control.

Stomatal opening is an energetically expensive process
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Fig. 1. Levels of atmospheric [CO2] (Berner, 2006) and [O2] (Berner, 2009) over Phanerozoic time and the diversification of plant species

(Niklas et al., 1983). Origination of: (a) planate leaf; (b) ferns; (c) cycads and Ginkgoaceae; (d) conifers; (e) angiosperms; (f) grasses, and

(g) C4 grasses.
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Fig. 2. Maximum rate of photosynthesis (Amax) and stomatal conductance (Gs) of an evolutionary range of plants. The line of best fit

relates to angiosperms and gymnosperms and does not include pteridophytes (R2¼0.748; linear regression, P¼0.012). Error bars

indicate the standard error either side of the mean.
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requiring O2 to fuel the ion transport required to raise

guard cell turgor (Humble and Hsiao, 1970; Shimazaki

et al., 1983; Schwartz and Zeiger, 1984; Mawson, 1993a).

Indeed, higher maximum stomatal conductances in Gos-

sypium barbadense are associated with higher guard cell

respiratory demands (Srivastava et al., 1995). However,

maintenance of stomatal aperture via guard cell chloroplast

photophosphorylation and production of osmotically active
sugars may reduce the consumption of oxygen (Walker and

Zelitch, 1963; Vavasseur et al., 1988; Mawson, 1993b).

Oxygen is also required for effective stomatal control,

increasing the speed of guard cell turgor loss during

stomatal closure, and the ability of guard cells to respond

to changes in atmospheric [CO2] (Akita and Moss, 1973).

During periods of ‘high’ atmospheric [O2] the respiratory

demands of stomatal control will be reduced, favouring
those species with a high degree of stomatal control. Thus

the combined effects of O2 on photosynthesis relative to

photorespiration, and the energetic requirements of stoma-

tal control, may have acted as a selective driving force in

plant evolution in conjunction with [CO2] starvation.

An evolutionary trend is also evident in the stomatal

responses of plant groups to [CO2]. Unlike conifers and

ferns, angiosperms exhibit reductions in stomatal conduc-
tance to an increase in atmospheric [CO2] (Brodribb et al.,

2009). This optimization of WUE through short-term

stomatal control confers a selective advantage to angio-

sperms over more ancient evolutionary plant groups in

a ‘low’ [CO2] world (Robinson, 1994; Brodribb et al., 2009).

The ability to sustain higher stomatal conductance rates

and stomatal sensitivity in angiosperms may be due to the

possession of higher stomatal densities of smaller stomata
than gymnosperms and pteridophytes (Hetherington and

Woodward, 2003; Franks et al., 2009), permitting the

operation of a higher diffusible area of stomatal pore

relative to the total leaf area, and greater exploitation of

the edge effect (Jones, 1992). This selective advantage of

greater stomatal control is also apparent in the ‘dumb-bell’

stomata of grasses that permit greater and more responsive

changes in stomatal aperture than kidney-shaped stomatal

complexes (Hetherington and Woodward, 2003; Franks and

Farquhar, 2007). Nonetheless, this greater degree of

‘short-term’ stomatal control and maximum conductance

rates accrues costs in terms of hydraulic constraints

(Brodribb et al., 2003) and the operation of effective

mechanisms to sense environmental conditions such as

light or [CO2] and signal to individuals or groups of
stomata (Heath, 1950; Pospisilova and Santrucek, 1994;

Hetherington and Woodward, 2003; Hu et al., 2010).

The evolutionary significance of the costs associated with

stomatal control may be observed by comparing the

stomatal responses of plant species from volcanic CO2

degassing vents, that have experienced multigenerational

growth at high [CO2], with individuals of the same species

that have not experienced [CO2] above current ambient
(;380 ppm CO2) (Fig. 3). In the grass species Agrostis

canina, this is manifested in higher rates of stomatal

conductance in the plants adapted to ‘high’ [CO2], but

identical photosynthetic rates to individuals adapted to

‘lower’ [CO2] when grown at current ambient levels of

[CO2]. The Agrostis population adapted to ‘low’ [CO2]

displays instantaneous WUE ratios ;30% greater than their

‘high’ [CO2] adapted counterparts when both are grown
under current ambient atmospheric [CO2]. However, when

grown in atmospheres of enriched [CO2] (1500 ppm), those

plants adapted to ‘high’ [CO2] maintain stomatal conduc-

tance rates and exhibit pronounced rates of assimilation

relative to individuals adapted to ‘low’ [CO2] that reduce

stomatal conductance by ;77% (Haworth et al., 2010a).

This suggests that differing strategies of stomatal control

have developed to suit the prevailing atmospheric condi-
tions experienced by both populations.

The evolutionary cost of stomatal control may also be

apparent in the differences observed in the regulation of

stomatal aperture and optimization of stomatal numbers

between angiosperms and conifers. Many conifer species

alter their stomatal frequency over a larger and higher range

of [CO2] values than many angiosperms (Kouwenberg et al.,
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Fig. 3. Stomatal conductance (Gs) and photosynthesis rate (PN) of individuals of Agrostis canina adapted to ‘high’ and ‘low’ [CO2].

Atmospheric [CO2] levels were ;400 ppm in the greenhouse, 380 ppm in the ambient growth chamber, and 1500 ppm in the elevated

[CO2] treatment. Individuals adapted to ‘high’ [CO2] were collected from the volcanic CO2 degassing vent of Mefite di Ansanto, Italy,

where vegetation experiences mean atmospheric [CO2] values of ;3500 ppm. Error bars indicate the standard error either side of the

mean (Haworth et al., 2010a).
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2003; Haworth et al., 2010b). However, angiosperms exhibit

greater proportional changes in stomatal number over

a narrower [CO2] range, and often do not alter stomatal

initiation to fluctuations above current ambient levels of

CO2 (Woodward, 1987; Kürschner et al., 1997), possibly as

a result of their greater exploitation of short-term stomatal

control via changes in stomatal aperture (Franks and

Farquhar, 2007; Brodribb et al., 2009). An understanding
of the role of evolutionary selective pressures in shaping

both the strategies and the degree of stomatal control

exerted by modern plants would greatly assist predictions

of likely future crop, biodiversity, and landscape process

responses. The exploitation of controlled environment

studies, and technological advances such as infra-red

thermography, synchronous leaf gas exchange, chlorophyll

fluorescence measurements, and compound-specific carbon
and hydrogen isotopic analysis will build upon the signifi-

cant achievements in stomatal research conducted over the

past 60 years.
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