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Abstract

For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As

a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall

understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant

metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their

place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time

necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant
metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling

increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant

metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing

effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite

measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on
13CO2 dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic

flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of

crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other
systems biology measurements are necessary to guide plant metabolic engineering in the future.
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Introduction

Maps provide perspective. They show the lay of the land

and show which ways are possible, and often which ways

are more efficient, from one point to another. A metabolic

map is similar to a roadmap, detailing the myriad of

pathways through which metabolism may occur. An

effective and helpful metabolic map is one that enables

researchers to determine quantitatively what is occurring
within the organism, how alterations affect the map, and

what changes might lead to more desirable traits.

Metabolic engineering is the improvement of cellular

activities through the manipulation of cellular functions

employing recombinant DNA technology (Bailey, 1991).

The ability to directly manipulate an organism’s genome

has had profound and wide-reaching impacts on every

biological industry in the world today. It has enabled

revolutions in agriculture (Stein et al., 2008), pharmaceuti-

cal production (Chemler and Koffas, 2008), chemical

synthesis (Carothers et al., 2009), and many other fields.

The complexity of a biological system makes it difficult for

scientists to determine what the actual effect of a change
was and why it did or did not result in the desired aims.

Measuring the inputs and outputs of single cell type is

relatively straightforward, but understanding what is occur-

ring within a cell, particularly in plants, requires much

greater knowledge and effort. Metabolic engineering tools

such as metabolic pathway analysis or metabolic flux
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analysis (MFA) make it possible to understand what is

occurring within an organism’s metabolism, and in the case

of genetically modified organisms, allow researchers to

determine which mechanisms are contributing to the

success, or failure, of recombinant DNA interventions.

Central to the understanding of metabolism is the detection

and quantification of metabolic fluxes (Stephanopoulos,

1999). Increased quantitative knowledge about metabolism
has enabled efforts towards alterations in both organisms and

their environments in order to optimize production. An

example of improvement is increasing carbon efficiency, i.e.

reducing the amount of carbon expelled as CO2 in a synthesis

process rather than being utilized in the creation of the

desired product (Alonso et al., 2007a). An important aspect

of metabolic engineering is to determine which reactions

within an organism’s metabolism carry significant fluxes and
which reactions have a major impact on the control of

various routes in order to better guide the synthesis of more

efficient or novel pathways.

The foundation of a metabolic map is the structure of the

metabolic network. It is essential to determine beforehand

the scope of the system and to ensure that adequate

information is available for accurate construction. At

a minimum, accurate stoichiometry is the basis for reac-
tions. Additionally, depending on the approach, different

information is required, such as energy cofactors for the

reactions or carbon rearrangement patterns. Fortunately

there are many tools available for the reconstruction of

plant metabolic networks such as textbooks, biochemical

literature, and, more recently, online sources such as

KEGG, MetaCyc, and genome annotations. Some of these

tools are becoming automated (Henry et al., 2010), but
there is usually a non-trivial amount of manual curation

required.

Network topology and extracellular flux measurements

are not sufficient to generate probable or actual flux

distributions of a metabolic network. This is due to branch

points, cycles, and parallel pathways, which result in many

degrees of freedom even in simplified metabolic networks.

In order to determine the probable or actual patterns of flux
in a given system it is necessary to apply more information.

By applying physicochemical constraints such as the

conservation of each element, of energy, charges, and free

energy changes to determine reaction directions, and

keeping the levels of metabolic intermediates constant

(metabolic steady state), it is possible to constrain the range

of possible flux patterns. This range of fluxes, known as the

solution space, is generally quite large. Therefore to make
predictions about what the actual fluxes are likely to be,

further assumptions or measurements are needed. The

simplest way to meet this requirement is the application of

an objective function. An objective function seeks to

optimize a goal or set of goals, such as maximizing biomass

production, maximizing chemical energy production, or

another objective (Feist and Palsson, 2010). With this

additional information, a reduced solution space of possible
fluxes that more likely depict those chosen evolutionarily

can be found for the model. This method is called

constraints-based or flux balance analysis (FBA), and has

been employed for many microorganisms, including several

phototrophic organisms on both small to mid-size scales

(Shastri and Morgan, 2005; Grafahrend-Belau et al., 2009)

as well as on a full genome scale (Boyle and Morgan, 2009;

Poolman et al., 2009).

In the simplest cases (typically prokaryotic heterotrophs),

measurements of substrate uptake rate, biomass composi-
tion, growth rate, and product excretion rates can be

sufficient to constrain the model and yield flux maps with

ranges for the major net metabolic fluxes. Frequently,

though, even these measurements leave the model highly

underdetermined, and estimates for internal fluxes – partic-

ularly reversible ones – can be potentially misleading (Chen

et al., 2011).

To further resolve the metabolic fluxes, techniques have
been developed using isotopically labelled substrates to

provide additional information about the metabolism. By

employing isotopically labelled substrates and examining

the amount of isotopic label incorporated into the down-

stream products to determine which metabolic pathways

were employed, MFA provides a ‘snapshot’ of flux rates

within the organism (Wiechert, 2001). These isotopically

labelled products, which are isomeric with respect to the
position and number of isotopically labelled atoms they

contain, are referred to as ‘isotopomers’. Because of the

isotopic labelling of the substrate (usually the carbon),

individual atoms can be traced through the organism’s

metabolism, greatly increasing the amount of information

available about various reaction rates. This is particularly

useful in distinguishing between pathways that use different

reactions to arrive at the same final metabolic product. The
specific labelling patterns observed correlate to the fluxes of

the different pathways. While MFA is unable to predict

what fluxes will result from a change in environment or

genetic engineering, it provides a highly accurate picture of

observable in vivo fluxes in a given organism. This ability

makes it a useful tool in evaluating the effect, or lack of

effect, of individual mutations at the metabolic level

(Lonien and Schwender, 2009). It provides more guidance
than general phenotypic evidence such as growth or tran-

scriptome data by allowing detailed quantitative estimates

of what is actually occurring at the functional metabolic

level in vivo.

In contrast to FBA which relies on optimality assump-

tions to predict fluxes, 13C-MFA exploits the information

obtained from measuring labelled metabolites to determine

the fluxes in a given organism. This makes 13C-MFA
significantly superior in quantitative and diagnostic cases.

From this point on, all references to MFA will be

specifically referring to 13C-MFA. Whereas FBA can pro-

vide a range within which the flux is expected to fall, MFA

gives the statistical best fit values seen within the cell

(Williams et al., 2010; Hay and Schwender, 2011a; Young

et al. 2011) including confidence intervals for each flux

estimated. Also, unlike FBA, MFA is equally effective in
genetically engineered organisms that may no longer

operate at a physiological optimum and are therefore
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unlikely to be following a single simple objective function.

There are forms of FBA such as MOMA (minimization of

metabolic adjustment) that are better for genetically engi-

neering organisms than basic FBA (Segré et al., 2002), but

because FBA is predictive rather than diagnostic, it is not

equally suited for genetically modified cases. Finally, due to

the difference in label scrambling through different path-

ways, MFA may enable the determination of fluxes through
parallel pathways and cycles as well as the exchange fluxes

through individual reactions, which FBA cannot. This

makes it possible to use MFA to confirm activity in

pathways that were previously believed inactive (Schwender

et al., 2004), or inactivity in pathways believed to be active.

MFA, though, requires much more computational power to

resolve fluxes than most forms of FBA. Therefore, most

MFA models have been restricted in scope, although recent
advances have been made to extend them to a much greater

scale (Ravikirthi et al., 2011). Despite this limited scale,

many discoveries and advances have been made using

MFA, as apparent in an array of earlier reviews (Kruger

and Ratcliffe, 2008; Libourel and Shachar-Hill, 2008;

Schwender, 2008; Allen et al., 2009a).

Analytical tools

Multiple tools have been employed to discern isotopic

labelling patterns. Each of these has their own distinct
advantages and disadvantages and all have seen significant

advances over the recent years. Additionally, further

experimental techniques, such as subcellular fractionation

(Farré et al., 2001) and the analysis of compartment-specific

metabolic products (Allen et al., 2007), are being developed

to obtain a greater amount of information.

Nuclear magnetic resonance spectroscopy

One major tool for analysing the isotopic labelling patterns
of metabolites is nuclear magnetic resonance (NMR)

spectroscopy (Ratcliffe and Shachar-Hill, 2005), sometimes

paired with liquid chromatography (LC) for metabolite

separation (Exarchou et al., 2005). The greatest advantage

of NMR is that it can be used to measure labelling in

different carbon positions within the metabolite. This

provides the maximum amount of information available to

solve the metabolic flux map. Additionally, using multidi-
mensional NMR, it is possible to get high resolution with

respect to the separation of signals from different metabo-

lites. In favourable cases, such as protein hydrolysates,

NMR can be used without chromatographic separation

because of this high resolution. This significantly decreases

the sample preparation work as well as the total time

needed for each sample run. However, the complexity of

plant metabolic networks is so great that it is often difficult
to decipher meaningful results from plant extracts without

additional upstream separation (Kim et al., 2011).

The most significant disadvantage of NMR in MFA is

the relatively low sensitivity of 13C in NMR. This is the

biggest detractor from widespread NMR usage because

frequently there is not a large amount of sample due to the

prohibitive cost of labelled substrate and the small size of

many metabolite pools. Advances in NMR spectroscopy,

such as cryo- and small sample volume probes and

multinuclear and multidimensional techniques, have worked

to overcome this lack of sensitivity and potentially re-

establish NMR as an effective tool for the measurement of

intracellular metabolites (Fan and Lane, 2008). NMR
results often also require significant training to interpret

correctly, which has limited the number of those using it

for MFA.

Mass spectrometry

A second major analytical method for the analysis of

isotopically labelled metabolites is mass spectrometry (MS).

MS can be paired with either gas or liquid chromatography

or capillary electrophoresis to separate metabolites with

overlapping mass to charge signals and MS can be

performed in tandem for a more accurate analysis and

increased resolution. Gas chromatography (GC) is advanta-
geous because of its superior separation efficiency and

resolution. This capability makes it attractive for quantify-

ing non-abundant metabolites. However, gas chromatogra-

phy requires that the analytes are capable of volatilization

(Roessner et al., 2000). Most metabolites of interest are not

volatile and therefore must be derivatized before analysis

using GC (Kanani et al., 2008). This derivatization and

subsequent volatilization commonly strips the phosphate
group from sugar phosphates, causing them to be indistin-

guishable from the phosphate free sugars or metabolites in

which the position of the phosphate group was the only

difference. Additionally, heat labile compounds may be

destroyed during derivatization and/or volatilization. There-

fore, there are many metabolites for which GC/MS is not

a suitable method of analysis. (Villas-Boas et al., 2005).

LC coupled with MS using electrospray ionization, is
a less harsh ionization method. Although LC does not

resolve peaks as clearly as GC, it is capable of analysing

some key metabolites such as sugar phosphates, nucleotide

sugars, and others that are labile or present at low

concentrations. Tandem MS methods can efficiently yield

the necessary resolution to distinguish individual metabo-

lites from each other. A number of papers in recent years

detail methods such as ion pairing with reversed-phase
chromatography or other separation methods to efficiently

separate large numbers of even chemically very similar

metabolites (Hayashi and Satoh, 2006; Luo et al., 2007;

Alonso et al., 2010a). Additional work has also been done

to optimize the combination of LC and tandem MS (Bajad

et al., 2006).

The other method used to separate metabolites for

analysis is capillary electrophoresis. It is frequently paired
with either regular MS or tandem MS for increased

specificity and resolution. A number of methods have been

developed to utilize the separation capabilities of capillary

electrophoresis for a variety of organisms (Soga et al., 2003;

Edwards et al., 2006), including plants (Sato et al., 2004;
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Harada et al., 2008; Hasunuma et al., 2010). Like LC,

capillary electrophoresis is a gentler method of separation

and is able to maintain the more labile metabolites in their

native forms and coupled with tandem MS achieves a similar

high resolution (Monton and Soga, 2007).

Mass spectrometry has many attractive features. The

results of MS analysis are simple to collect and interpret.

Additionally, using tandem MS it is possible to obtain very
high sensitivity, detecting metabolites with nanomolar con-

centrations. In comparison to NMR methods, this higher

sensitivity is the driving force behind the widespread use of

MS for MFA. The downside to mass spectrometry is that it

groups isotopomers together by mass, as shown in Fig. 1,

decreasing the total amount of information collected due to

a loss of knowledge relating to the positioning of the labelled

carbon atoms. This shortcoming is not crippling, however,
because even grouped in this manner the analysis of labelled

metabolites can provide enough information to constrain the

solution space and to overdetermine the fitting process for

obtaining flux values.

Tandem MS or the full analysis of ion fragmentation in

single quadrupole MS has the ability to recover some of the

positional labelling data which is obscured by grouping

isotopomers by mass. In this case, because metabolites have
known and consistent fragmentation patterns, it is possible

to not only observe the whole metabolite mass distribution,

but also the mass distribution of key fragments (Allen et al.,

2007) making it possible to compare the two and decipher

the labelling of individual metabolite fragments. The

absence of derivatization and less energetic ionization

methods reduce the fragmentation of metabolites and

therefore the positional labelling information obtained in
the simplest LC-MS methods, but tandem MS allows

a comparison of the labelling of daughter ions with their

parent ions to determine if labelled or unlabelled atoms

were lost during the secondary ionization (Choi and

Antoniewicz, 2011). While neither of these methods gener-

ally yields the level of detail of label positions that may be

obtained from NMR, they each serve to increase the

amount of information gathered from MS analysis without

greatly increasing the sample preparation or run time. In

principle, a combination of NMR and MS methods is

complementary (Ratcliffe and Shachar-Hill, 2006), and they

have been used synergistically in MFA of plant systems

(Alonso et al., 2007a, 2010b); but in practice, MS methods

are more frequently used alone, especially where intermedi-

ates are analysed and in studies of prokaryotic systems
(Young et al., 2011) or metabolic subnetworks in higher

plants (Colón et al., 2010) where a simpler network and/or

model is being used.

Mathematical tools for MFA

MFA, like all types of metabolic mapping, is based on

a predetermined set of metabolic pathways being analysed.

Additionally, it is necessary to track the various positional

changes of labelled atoms. This is frequently handled by

atom mapping matrices, which are a concise mathematical
format describing the physical rearrangement of atoms

from the substrate(s) to the product(s) of a reaction (Zupke

and Stephanopoulos, 1994). Upon this basic framework,

several methods have been built to determine the actual

fluxes within the metabolic pathway from the observed

labelling patters of downstream products or intermediate

metabolites. The two formulations generally used today are

cumomer analysis (Wiechert et al., 1999) and elementary
metabolite unit (EMU) analysis (Antoniewicz et al., 2007a).

These formats are popular because they reformulate the

problem of tracking label into a system of linear equations.

This significantly decreases the computational power neces-

sary to solve them for a set of fluxes that best fits the

labelling and other measurements. In addition to these

overall formats, modifications can be made to the computa-

tional methods in order to accommodate deviations from
the core assumptions (including metabolic and isotopic

steady state) upon which the model is built.

Assumptions

As with all models, in MFA there are a few key

assumptions. In order to accurately quantify fluxes, the

experimental analysis cannot disturb the fluxes and the

fluxes must remain constant long enough to be quantified.

This produces the first two assumptions of MFA. The first
assumption is that enzymatic reactions do not discriminate

between isotopically labelled and unlabelled substrates.

Detailed previous studies have shown that while there is

a slight discrimination in enzymatic substrate selection due

to the minor difference in bond energies between 12C–12C

and 12C–13C bonds, it is small enough not to have any

significant impact on the calculated fluxes (Kruger et al.,

2007a; Feng and Tang, 2011).
The second assumption is that fluxes within the metabolic

pathways being studied are constant. This assumption is

thought to be valid if the cultures are grown in balanced

growth over several generations, meaning there is no change

in the biomass composition with time. The most common

Fig. 1. Mass spectrometry analysis clusters isotopomers of the

same molecular weight together, reducing the degree of informa-

tion collected during analysis as compared to nuclear magnetic

resonance readings.
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method of confirming this is by analysis of metabolites

demonstrating that an isotopic steady state is reached

(Zamboni et al., 2009), meaning that the concentrations

and labelling patterns of the metabolites are not changing

with time. Moreover, for an isotopic steady state to be

reached the system must also be at a metabolic steady state.

It should noted that isotopic steady state is not necessary

for analysis, but if not present requires significantly more
data and a more advanced computational framework

(Shastri and Morgan, 2007; Noack et al., 2011).

The final assumption is that the metabolic model contains

all fluxes with a significant impact on the labelling patterns

of the measured metabolites. This assumption should be

based in a solid understanding of the organism’s bio-

chemistry and is validated by checking the statistical fit of

the resulting model calculations (Antoniewicz et al., 2006).
If the model fails to properly fit the data, it must be

reformulated. This is aided by observing where major

disparities occur in the original fit of the model, but, as

with model formulation, all changes to the model should

still be based on an understanding of the organism’s

metabolism.

Current modelling techniques

EMU analysis has grown in popularity since its introduc-

tion due to the significant reduction in computational power

necessary to solve for fluxes. This is largely due to the

omission of extraneous calculations found within other
methods. Cumomer modelling, in contrast, resolves the full

labelling pattern of all intermediates. However, if not all

metabolites are measured then not all of them need to have

their full labelling pattern resolved. Additionally, in experi-

ments where MS is used to determine labelling, significant

positional information is lost. This latter case is where

EMU analysis excels the most, since discarding this in-

formation significantly reduces the size of the model that
must be calculated. By focusing only on resolving the

observable results of a metabolic network EMU analysis is

more efficient. This has resulted in a roughly 10-fold

reduction in the number of variables necessary for the final

resolution of the model while obtaining the same results

(Antoniewicz et al., 2007a).

Further reduction of the computational resources re-

quired has been achieved through other methods, which
can be coupled with any of these modelling frameworks.

Flux coupling operates by observing which reactions are

connected and the inherent restrictions they impose on each

other. While flux coupling does not reduce the connected

fluxes to a single entity, it mathematically relates them in

a rigid format to reduce the amount of calculation to arrive

at a solution (Burgard et al., 2004; Suthers et al., 2010).

Another way in which computational load has been reduced
is through the use of Dulmage-Mendelsohn decomposition.

Although this form of reduction is less useful as the

complexity of the network increases, it has been shown to

be effective in smaller systems (Young et al., 2008).

Non-steady-state MFA

In some cases, it is impractical to wait for an isotopic steady

state to be reached or steady-state labelling is uninforma-

tive. In these cases, an alternative mathematical framework

must be used in order to obtain flux values. In recent years,

multiple modelling approaches have connected steady-state

and dynamic approaches (Young et al., 2008; Suthers et al.,
2010; Noack et al., 2011). In cases where pool turnover is

not significant enough to achieve steady state in a reasonable

amount of time, a dilution parameter can be applied to take

into account the proportion of the pool which has not

turned over and remains from before the input of labelled

substrate to the system. This parameter can be fixed as

a single value for the whole cell, specific cellular compart-

ments, or metabolite pools individually. A more in-depth
discussion of the application of this dilution parameter can

be found in Antoniewicz et al. (2007b). Additionally,

methods have been developed for dynamic analysis of

labelling. These methods are particularly useful in situations

where isotopic steady state is unattainable or uninformative

(Young et al., 2008). In these instances, multiple time points

must be taken and the framework used involves solving for

both relative distribution of label within each metabolite
and the metabolite concentrations. An in-depth discussion

of the application of dynamic EMU analysis can be found

in Young et al. (2008). In addition to providing a viable

solution strategy in conditions where the isotopic steady-

state criterion for MFA is not met, non-stationary measure-

ments provide a much larger data set for analysis. This

leads to a significant increase in the reliability of the flux

estimates results by providing confidence ranges smaller
than those possible solely through measurements of isotopic

steady-state labelling patterns (Noack et al., 2011).

For the study of organisms growing purely photoautotro-

phically such as plants, dynamic MFA is essential. Because

the labelled substrate is by necessity 13CO2, the steady-state

labelling pattern will contain a uniform labelling pattern

devoid of any information relating to fluxes. By feeding
13C-labelled CO2 and tracing the dynamic incorporation of
the label into various intracellular metabolites, it is possible

to determine the fluxes of a photoautotrophic organism, as

postulated by Shastri and Morgan (2007) and demonstrated

conclusively by Young et al. (2011). Until now nearly all

plant tissues studied have been grown hetero- or mixotroph-

ically in order to attain observable labelling patterns. With

dynamic MFA, however, it is possible to measure the fluxes

of autotrophic tissues as well.

Statistical analysis

Finally, it is important to have well-developed methods for

the statistical analysis of a computed metabolic flux map,
and recent years have seen greater use of appropriate

statistical tools in MFA. In calculating the map, it is

necessary to use the variance-weighted values of the

experimental data to avoid bias in the resulting solution.

Appropriate choice of weightings for label and other
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measurements is not trivial in MFA since some measure-

ments may be highly reproducible in experimental replicates

but subject to systematic errors that exceed the experimen-

tally observed variances. Such measurements may include

biomass composition and some stable isotopic labelling

data. In such cases, it may be appropriate to use larger

variances than observed by replication in order to rely more

equally on the large number of measurements and avoid
potentially depending too much on a subset of data.

Further statistical analysis can be employed to verify the

accuracy of the metabolic map itself, checking to determine

that the errors between measured and computed values

follow an appropriate v2 distribution, as they should if the

error is random rather than systematic (Klapa et al., 2003).

Systematic error is indicative of a problem with the model,

either in the proper weighting of experimental values or else
in the basic structure of the metabolic map. This could be

caused by a missing reaction, or series of reactions, or else

a reaction that is not feasible. In the case of eukaryotic

organisms, this error can be caused by a lack of proper

separation between reactions that occur in more than one

cellular compartment. Additionally, it is important that

appropriately obtained confidence intervals are reported

with the fluxes. Instead of calculating the effect of the
variance of each experimental measurement on the overall

solution space this is done by testing the sensitivity of the

minimized sum of squared residuals to each individual flux

as detailed by Antoniewicz et al. (2006). Another approach

to obtaining confidence intervals is to perform multiple

fitting computations using input data values that have been

randomly perturbed according to their experimentally

observed variances (Monte Carlo methods) and reporting

a confidence interval for each flux value based on the range

of values observed. However, Monte Carlo methods are

computationally burdensome for large systems and the

method proposed by Antoniewicz et al. (2006) has been

shown to be equally effective.

Compartmentation: added complexity

Eukaryotic algae and plant cells are divided into intracellu-

lar organelles. Each of these organelles has unique and

essential functions, but there are also frequently overlapping

functions, metabolite pools, and reactions. This creates

many issues when trying to distinguish which metabolic
pathways are active. As previously discussed, the main

method by which MFA distinguishes pathways is through

different isotopic labelling patterns. If a reaction can

occur in more than one organelle, then additional informa-

tion is required to determine the amount of flux in each

compartment.

Intracellular compartmentation

In the case of plants it is frequently found that metabolite

pools exist in more than one location (Fig. 2) or that the

subcellular location of one or more reactions is uncertain.
Entire sections of metabolic pathways like glycolysis are

duplicated between organelles, particularly the plastid and

cytosol, with both being potentially active and carrying flux

(Dennis and Blakeley, 2000). In such cases it is crucial to

have methods that are able to determine the pathways in

separate organelles from one another (Kruger and Ratcliffe,

2008). There are multiple ways of doing this. The first and

Fig. 2. Plant metabolism is highly compartmentalized on the intracellular, intercellular, and whole-organism scale. This high degree of

complexity and interactivity makes accurate study of their metabolism an exacting science. Cyt, cytosol; Mit, mitochondria; Per,

peroxisome; Pla, plastid; Vac, vacuole.
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simplest way is to examine metabolites which are formed in

only one of the compartments (Sriram et al., 2004, 2007;

Schwender et al., 2006; Allen et al., 2007; Lonien and

Schwender, 2009). This method uses amino acids, lipids,

and carbohydrates for which the compartment-specific

formation is well established, although other metabolites

could potentially be used. Unfortunately, even with the

supplemental information provided by analysing compart-
ment-specific metabolites, it may still be impossible to

statistically distinguish different configurations of the meta-

bolic map (Masakapalli et al., 2010). Another method

involves the fractionation of cellular material prior to

metabolite analysis (Gerhardt et al., 1983; Farré et al.,

2001; Krueger et al., 2011). For time-course labelling

experiments, in which metabolic intermediates rather than

end products are analysed, the presence of multiple sub-
cellular pools of the same metabolite, including those in

vacuoles, makes such subcellular fractionation procedures

desirable. Unfortunately, this method is experimentally

challenging because of the difficulties of separating sub-

cellular fractions while preventing metabolite diffusion and

of reliably estimating the extent of any such redistribution.

If cells can be successfully fractionated, the differences in

labelling patterns between compartments should be discern-
able, and compartment-specific labelling patterns, and

therefore flux rates, are in principle obtainable.

Tissue compartmentation

In addition to its intracellular complexity, plant metabolism

includes the possibility of further separation of fluxes for

the same reaction, as they can also differ between cells and

tissues within the same organ (Fig. 2). This can lead to flux

estimates based on labelling patterns that do not directly

represent the metabolism of the cells being analysed

(Ettenhuber et al., 2005; Spielbauer et al., 2006; Tcherkez

and Hodges, 2009). In order to avoid this, there are multiple
solutions. The first is to focus on cells that do not draw as

heavily on other cells for their metabolism, such as leaf

cells. This minimizes the impact of the cellular exchange of

metabolites on the single-cell metabolic network. However,

even in the case of leaf cells, where photosynthesis is highly

active it has been shown that there is still significant usage

of carbon from the rest of the plant (Gauthier et al., 2010).

Another approach is to include multiple cell types in the
tissue being studied but to make measurements of metabo-

lite flow from on tissue to another and of any contributions

by one tissue to label rearrangements made in another

(Alonso et al., 2011).

In studying plant cell culture suspensions (Baxter et al.,

2007; Williams et al., 2008; Masakapalli et al., 2010;

Williams et al., 2010), it was possible to avoid the

complications of multiple cell types. Similarly, seed embryos
cultured in a constant environment can be assumed to be

largely uniform in their metabolism during the extended

period when their development is dominated by the

accumulation of storage compounds (Allen et al., 2009b;

Lonien and Shwender, 2009; Alonso et al., 2010b). Such

systems have the advantage of controllable substrate

feeding to the cells, allowing inputs to the metabolism to be

varied as well as facilitating the use of multiple labelling

schemes to yield enlarged labelling datasets. Additionally,

all the products are either stored in measurable pools

separated from the ongoing metabolism or else they are

excreted to the medium. In this way, a single cell type can

be isolated for the study of its metabolism. The challenge of
this method is to accurately reproduce the metabolism that

would be found in planta under realistic physiological

conditions. If the media formulation does not accurately

mimic the substrate concentrations that the cells would

observe in vivo then the metabolism may not either.

Growing cells in suspension also alters the cell–cell signal-

ling that would be found in a whole-plant system. These

limitations mean that researchers must take special care
when designing and performing these experiments to ensure

that the results capture the intended real-world applications.

A window into maize metabolism

Maize is an important world crop and a long-standing

model species for studies of plant growth and metabolism,

and several groups have applied MFA tools to this species.

Indeed the first major application of 13C-MFA to measur-

ing fluxes through the central metabolic network in higher

plants was a study of maize root tips (Dieuaide-Noubhani

et al., 1995) in which steady-state labelling of soluble

metabolites was used together with 14C labelling measure-
ments to derive net and exchange fluxes though the major

pathways of central metabolism. This notable study demon-

strated for the first time in plants that modelling steady-

state positional labelling data could be used to obtain a large

set of flux values, which had up to this time required

multiple sets of experimental data, often occupying multiple

studies over a period of years. Further applications of
13C-MFA to maize roots have shed light on the role of
sucrose synthase isoforms in carbohydrate metabolism and

on the changes induced in central metabolism by oxygen

limitation (Alonso et al., 2007b,c).

Among the findings reported in this study was the

apparent dissipation of most of the ATP generated by

respiration through turnover and resynthesis of sucrose.

This substrate or futile cycling had been reported pre-

viously, but 13C-MFA studies in maize roots (Dieuaide-
Noubhani et al., 1995) and tomato cells (Rontein et al.,

2002) highlighted this as a potentially dramatic process.

Subsequent studies of metabolic fluxes in maize roots using

labelling and enzyme activity measurements (Alonso et al.,

2005, 2007b) and direct measurements by in vivo NMR of

ATP turnover fluxes and metabolic flow through nucleotide

sugars and sugar phosphate pools (Roscher et al., 1998)

added support to the idea that the active turnover of
sucrose and glucose pools in plant cells can dissipate

a substantial proportion of cellular ATP. This conclusion

has been challenged by Kruger et al. (2007b) who showed

computationally that 13C-MFA which relies on labelling in

soluble sugars and ignores the compartmentation of sugar
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pools and reactions into vacuolar and cytosolic components

can potentially seriously overestimate the degree of futile

cycling. The issue of sugar turnover and futile cycling high-

lights the way in which 13C-MFA can point to biologically

significant processes that are difficult to quantify by classical

methods and which are not likely to be identified by

computational approaches like FBA that assume objective

functions. The disputed status of conclusions also emphasize
the increased care and information that is needed to resolve

fluxes in compartmentalized cells – especially in plants where

both metabolites and fluxes are present in multiple compart-

ments (Allen et al., 2007, 2009a).

The syntheses of starch oil and protein in maize seeds have

also been the subject of 13C-MFA studies and these have

yielded insights into the major fluxes that provide the

reductant, ATP and precursors for storage production. By
contrast with other seeds studied by 13C-MFA, maize seeds

present particular challenges. They require supporting mater-

nal tissue (the cob), and they consist of two distinct seed

tissues (a starchy endosperm and an oil- and protein-rich

embryo). The first steady-state 13C labelling studies of devel-

oping maize kernels (Glawischnig et al., 2002; Spielbauer

et al., 2006) focused on measuring by NMR the 13C labelling

patterns in glucose units of starch (largely from the endo-
sperm). The labelling data were interpreted using a simplified

model of central metabolism that focused on routes by which

label in hexose can be rearranged. It was deduced that the

large majority of sugar supplied to the cultures had its label

rearranged by flow through a combination of pathways before

incorporation into starch. Subsequent 13C-MFA studies

(Alonso et al., 2010b, 2011) highlighted the importance of

taking into account the metabolic activities of the maternal
cob tissue which was shown to transfer to the developing seeds

in culture a rather different array of labelled substrate

molecules to the simple labelled substrate(s) added to the

culture medium. Thus much of the label rearrangement takes

place in the cob. After taking this into account by direct

measurement of rates and forms of substrate transfer and

analysing a wider array of products (including oils and amino

acids in proteins, as well as carbohydrates), Alonso et al.

(2011) were able to fit the results to a full MFA model and

derive insights into carbon conversion efficiency (yield), as well

as revealing the routes of carbon flow into storage products.

The model revealed the presence of a large flow of carbon into

the plastid at the hexose level and subsequent efflux into the

cytosol as well as identifying potential targets for increasing oil

synthesis in maize endosperm – an attractive target for

metabolic engineering. The separate culture of maize embryo
also allowed the mapping of metabolic fluxes in this tissue and

highlighted the differences in the cells of different tissue types

within the same plant organ (Alonso et al., 2010b).

Applications of MFA for the analysis of
oilseeds

Among the various flux studies in higher plants, several were

aimed at describing in vivo flux distribution in the central

metabolism of developing seeds that store triacylglycerol as

a major storage compound. Such plant oils are of major

economic importance (Dyer et al., 2008). Developing seeds of

rapeseed and Arabidopsis (Schwender and Ohlrogge,

2002; Schwender et al., 2003, 2004, 2006; Junker et al., 2007;

Lonien and Schwender, 2009), soybean (Sriram et al., 2004;

Iyer et al., 2008; Allen et al., 2009b), sunflower (Alonso et al.,

2007a), and maize (Alonso et al., 2010b) were studied based

on culture of excised embryos in liquid media with different
13C-labelled organic nutrients (Table 1). Flux patterns in

central metabolism were quantified to understand partition-

ing and allocation of maternal carbon resources to oil,

protein and other storage compounds during seed develop-

ment (Table 1). As to the interpretation validity of the results

for in planta seed development, one should be critically aware

of the experimental conditions.

Precursors of fatty acid synthesis

Following basic nutritional aspects known for developing

seeds in planta, cultured embryos are typically fed with

multiple organic substrates (sugars and amino acids, Table 1).

By using 13C-label in the substrate mixtures, it was found

that de novo fatty acid synthesis (FAS) is predominantly

derived from hexose catabolism (Schwender and Ohlrogge,

2002; Allen et al., 2009b). The amino acids present as

substrates, while also serving as the nitrogen source for
protein synthesis, were only used to a limited extent as

carbon precursors for FAS (Schwender and Ohlrogge,

2002). This is not obvious a priori since Gln, Asp, and Ala,

for example, can be readily converted to 2-oxoglutarate,

oxaloacetate, and pyruvate, respectively. Those, in turn, are

close to acetyl-CoA, the precursor of fatty acids. Therefore

it appears that protein and lipid synthesis are separated to

a certain degree by subcellular compartmentation of pre-
cursor pools. Considering that de novo FAS from acetyl-

CoA is bound to the plastid compartment (Ohlrogge et al.,

1979), it becomes clear that, in flux studies to understand

seed metabolism, it is important to resolve subcellular

compartmentation. In fact all flux studies on oilseeds

summarized in Table 1, except one (Allen et al., 2009b),

resolve subcellular compartimentation with respect to the

cyctosolic, chloroplastic, and mitochondrial compartments.

Rubisco bypass: the path of carbon in oilseeds

Developing embryos of rapeseed, Arabidopsis and soybean

have photosynthetic capacity and light drives the conver-

sion of sugars to oil (Ruuska et al., 2004). A particular

feature of this light-dependent seed filling is the bypass of

upper glycolysis by an alternative metabolic route, convert-

ing hexose phosphate to the glycolytic intermediate

3-phosphoglyceric acid (3-PGA) via interconversions of the

pentose phosphate pathway and ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco) (Schwender et al., 2004;

Goffman et al., 2005). Due to the participation of Rubisco,

CO2 generated by catabolic and biosynthetic processes is

refixed, resulting in a reduced net CO2 loss, i.e. higher

carbon conversion efficiency in the oil-synthesizing seed
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(Schwender et al., 2004; Goffman et al., 2005). Theoretical

considerations based on typical steady-state 13C-labelling

experiments show that reliable quantification of the flux

through the bypass is not straightforward (Libourel et al.,

2007). This explains that in soy studies valid flux maps

could be obtained with or without consideration of Rubisco

in the network (Table 1). In developing rapeseed embryos,

by various complementary 13C-tracer approaches, it was

found that about 50% or more of 3-PGA is formed by the

bypass (Schwender et al., 2004, 2006) (Table 1). Beginning

with a light intensity of 50 lmol m�2 s�1, the relative flux

through Rubisco rises with light intensity (Schwender et al.,

Table 1. Generation of precursors and metabolic cofactors for storage synthesis in oilseeds

Data extracted from 13C-MFA studies of cultivated developing embryos of various species and genotypes. 3-PGA, phosphoglyceric acid;

NC, reaction not considered in flux model; OPPP, oxidative pentose phosphate pathway.

Oilseed species Soy a,b Soyc Rapeseedd�f Arabidopsis thalianag Sunflowerh Maizei

Cultivar/genotype cv. Evans cv.
Amsoy

cv.
Reston

Ws/pkp
(wt vs.
low-oil
mutant)

Col/wri
(wt vs.
low-oil
mutant)

cv. Ames 7576 LH 59

Conditions for embryo culture

(temp; light; duration)

12 �C/

20 �C/

27 �C;

100 lmol

m�2 s�1;

6 d

27 �C;

35 lmol

m�2 s�1;

14 d

20 �C;

50 lmol

m�2 s�1;

14 d

21 �C;

50 lmol

m�2 s�1;

7 d

21 �C; 50 lmol

m�2 s�1; 7 d

25 �C;

dark; 5 d

25 �C; dark; 7 d

Organic nutrients Sucrose/

Gln

Sucrose/

Glc/

Gln/ Asn

Sucrose/

Glc/

Ala/ Gln

Sucrose /

Ala/Gln

Sucrose /

Ala/Gln

Glc/Gln Glc/Fructose/

Gln

Oil content in cultivated

embryos (% of dry weight)

16b 18 38f 45/20 47/13 40 34

11–18a

Rubisco bypass (3-PGA

generated by Rubisco; mol%)

NC 25/NCk,l 46–75e 82/118 91/138 NC NC

45f

Generation of plastidic pyruvate, the precursor for de novo fatty acid synthesisj

Pyruvate generated by plastidic

pyruvate kinase (mol%)

– – 74 73/73 88/33 93 70

Pyruvate generated by

import form cytosol (mol%)

– – 26 25/21 10/53 NC NC

Pyruvate generated from

plastidic malic enzyme (mol%)

– – NC 2/7 2/14 7 30

Production of energy cofactors, relative to demands of storage synthesis

ATP production by

TCA cycle activity via

oxidative phosphorylation, relative to

biosynthetic demands (mol%)

154b,k 80 22 60; 100 71; 262 >100 200k

NADPH production by OPPP activity, relative

to demands of fatty acid synthesis (mol%)

200–350b,k NC/24k,l 38d OPPP flux

estimates

not reliable

OPPP flux

estimates

not reliable

106k 76k

NADPH production by plastidic

malic enzyme, relative to demands

of fatty acid synthesis (mol%)

29/27k,l NC 7 30

a Iyer et al. (2008).
b Sriram et al. (2004).
c Allen et al. (2009b).
d Schwender et al. (2003).
e Schwender et al. (2004).
f Schwender et al. (2006).
g Lonien and Schwender (2009).
h Alonso et al. (2007a).
i Alonso et al. (2010b).
j Soy models not considered since they do not fully distinguish pools of mitochondrial, plastidic and cytosolic pyruvate.
k Numbers derived by J. Schwender from published data.
l Allen et al. (2009b) considered two model variants. They mainly reported a model network with presence of Rubisco, but absence of oxidative

reactions of the OPPP. The published supplement considers an alternative model with Rubisco absent and OPPP present.
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2004), strongly suggesting a strict light dependency of the

process (Schwender et al., 2004; Hay and Schwender,

2011b). In developing Arabidopsis embryos, the Rubisco

bypass appears to be even more active (Lonien and

Schwender, 2009) (Table 1). For soybean embryos cultured

at lower light levels than in the case of rapeseed or

Arabidopsis, a smaller contribution of the bypass was found

(Table 1) (Allen et al., 2009b). In the various flux studies,
quantification of the Rubisco bypass should be realistic

since embryos cultures were kept under light levels that

were intended to mimic the intensities received by embryos

growing within a seed coat in planta. Altogether, the

contribution of the Rubisco bypass to glycolytic catabolism

of sugars in developing oilseeds appears to be substantial.

With regards to the apparent light dependency of the

Rubisco bypass (Schwender et al., 2004), it is unclear why
Rubisco seems to be present in non-green oilseeds that lack

photosynthetic potential. In developing endosperm of

castor, Rubisco enzyme activity has been found to be

sufficient to support fatty acid synthesis flux (Simcox et al.,

1977). While in higher plants the expression of genes

encoding for the Rubisco small subunit (RbcS) is strongly

light regulated and often undetectable in non-green tissues

(Dean et al., 1989), substantial expression of RbcS was
found for developing seeds of Sesamum indicum (sesame)

(Suh et al., 2003), in developing embryos of Tropaeolum

majus (nasturtium) and in the oil-accumulating endosperm

of Ricinus communis (castor) and Euonymus alatus (burning

bush) (Troncoso-Ponce et al., 2011). Could therefore the

Rubisco bypass be operative in these non-green oilseeds?

Simulations of a large-scale metabolic model of Brassica

napus seed development (bna572; Hay and Schwender,
2011a,b) can be used to further explore this question. For

a published model configuration of heterotrophy (see

Table 2, condition ‘HO’ in Hay and Schwender, 2011b) the

overall conversion of substrate carbon to biomass can be

calculated as 68.5% (carbon conversion efficiency, CCE; see

also Table 2 in Hay and Schwender, 2011a). Flux through

Rubisco is predicted to be inactive, i.e. any flux through the

reaction would reduce overall inefficiency in terms of CCE. If,
based on this simulated physiological condition, flux through

Rubisco is constrained to a value of 0.1996 lmol h�1 as

obtained for photoheterotrophy (Supplement S13, mode

‘PO’; Hay and Schwender, 2011b), a CCE of 67.8% is

obtained, which is only 0.7% smaller than the 68.5% obtained

for heterotrophy without Rubisco activity. This demonstrates

that increasing Rubisco flux under heterotrophy in an oilseed

might not be a substantial disadvantage in terms of carbon
efficiency. Given apparent expression of the enzyme in non-

green oilseeds like castor, the activity of the Rubisco bypass

in non-green oilseeds certainly deserves further theoretical

and experimental exploration.

Lower glycolysis provides pyruvate for FAS

Both upper glycolysis and Rubisco bypass merge at 3-PGA,

which is further catabolized via reactions of lower glycolysis

to yield phosphoenol pyruvate (PEP) and finally pyruvate,

the direct precursor of fatty acids in plastids. For the

generation of pyruvate, three major pathways can be

recognized: from plastidic PEP via plastidic pyruvate kinase

(PKp), from cytosolic PEP through a pathway involving

PEP carboxylase, malate dehydrogenase, and plastidic malic

enzyme (ME), or by uptake of pyruvate from the cytosol

(Table 1). The route via PKp has a dominant role in

providing pyruvate: typically PKp produces more than 75%
of plastidic pyruvate, used for FAS (Table 1). Besides PKp,

flux studies recognized substantial contributions to pyruvate

formation by ME (in soy and maize embryos, Table 1).

Major contributions to plastidic pyruvate apparently can

also be made by transport of cytosolic pyruvate into the

plastid (Table 1), but the existence of a reaction to transport

pyruvate from cytosol to plastids was only considered in the

B. napus and Arabidopsis thaliana flux models (Schwender
et al., 2006; Lonien and Schwender, 2009). In developing

B. napus embryos, pyruvate transport across the inner

plastid envelope has strong experimental support (Kang

and Rawsthorne, 1996; Eastmond and Rawsthorne, 2000)

and was therefore considered in the Brassica seed models

and later in Arabidopsis (Lonien and Schwender, 2009). Due

to lack of general molecular evidence for such a transporter

in plants, it is unclear if this transport process is present in
the other species reported in Table 1. Only recently the

molecular identity of a pyruvate transporter was unravelled.

In Arabidopsis, BASS2 (At2g26900) encodes for a protein

that is localized to the plastid inner envelope and was

characterized to have with Na+/pyruvate symporter activity

(Furumoto et al., 2011). A. thaliana BASS2 knock-out

mutants appear to have reduced capacity for plastidic

isoprenoid biosynthesis, which might de due to reduced
supply of plastidic pyruvate (Furumoto et al., 2011). Since

A. thaliana microarray data (Schmid et al., 2005) show

expression of BASS2 in developing seeds, the transport

modelled in A. thaliana developing seeds (Lonien and

Schwender, 2009) is likely mediated by this protein. Yet,

a seed phenotype for the BASS2 mutant has not yet been

reported. In future flux studies the expression of a BASS2

homologue in embryos of other oilseed crop species (corn,
soy) might be tested and the modelling of the transport in

flux models be considered. The movement of pyruvate

across the plastid envelope might be of further interest for

metabolic engineering in particular since it might be an

active transport. Initially orthologues of this transporter

have been discovered in the context of C4 photosynthetic

metabolism, where the Na+/pyruvate symport is proposed

to be indirectly driven by a pH gradient generated via Na+/
H+ antiport across the plastidic envelope (Furumoto et al.,

2011).

Cofactor supply for FAS

Both protein and lipid synthesis have substantial require-

ments of ATP (Schwender, 2008). Given flux rates of

mitochondrial NADH producing reactions, the magnitude

of potential ATP production via mitochondrial oxidative

phosphorylation can be estimated and compared to
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biosynthetic ATP demands, which can be inferred based on

fluxes through the biosynthetic pathways (Table 1). Accord-

ingly, in rapeseed embryos it was estimated that the

oxidative reactions of the tricarboxylic acid (TCA) cycle

provide about 20% of the biosynthetic ATP demand

(Schwender et al., 2006). No cyclic degradation of acetyl-

CoA has been found and the TCA cycle appears to be

mainly involved in anabolism, i.e. provision of cytosolic
acetyl-CoA used for fatty acid elongation (Schwender et al.,

2006). For soybean, the TCA cycle activity is relatively

higher and estimated to provide 80% of biosynthetic ATP

demand (Allen et al., 2009b), while for sunflower and maize

embryos this number is about 100% and 200%, respectively

(Table 1). It appears that catabolic TCA cycle activity is

lower in photosynthetic embryos (rapeseed, soy) as com-

pared to the non-photosynthetic (sunflower, maize), which
parallels the common observation that mitochondrial respi-

ration in leafs is inhibited in light (Atkin et al., 2000).

In non-photosynthetic tissues, the oxidative pentose phos-

phate pathway (OPPP) is regarded as a major source of

reductant (NADPH) for biosynthetic processes such as FAS

(Neuhaus and Emes, 2000; Kruger and von Schaewen, 2003).

After quantifying flux through OPPP and FAS, the NADPH

production by the OPPP can be expressed relative to the
NADPH demand in FAS (Table 1). For sunflower embryos,

production and demand appear to match closely (Table 1).

In case of Brassica and for one of the soy studies (Allen

et al., 2009b) the NADPH production by OPPP was found

to be far below the biosynthetic requirements (Table 1). Since

in both cases, photosynthetic capacity is present, a contribu-

tion of photosynthetic electron transport can be postulated

to be a major additional source of NADPH. The study on
maize embryos (Alonso et al., 2010b) suggests that the OPPP

and ME share the provision of NADPH in a 70:30 ratio

(Table 1). The conversion of malate to pyruvate by NADP-

ME with concomitant reduction of NADP provides both

pyruvate and NAPDH in a ratio of 1:1, which comes close to

the requirement for the synthesis of long-chain fatty acids

(e.g. 9:8 in the case of stearic acid). Earlier biochemical

studies on leucoplasts isolated from castor endosperm had
shown that malate can serve as a precursor that provides

carbon and reductant at the same time to fatty acid synthesis.

(Smith et al., 1992; Eastmond et al., 1997).

Comparing different flux states

Metabolic flux studies give a static picture of flux distribu-

tion under specific experimental conditions. Some flux

studies on oilseeds assessed the effect of environmental or

genetic perturbation by comparing different steady states,

which in turn can lead to hypotheses about regulation of

central metabolism in oilseeds.

Comparing B. napus embryos cultured with Gln and Ala
as nitrogen sources to cultures growing with inorganic

nitrogen demonstrated redirection of fluxes leading into

and out of the TCA cycle (Junker et al., 2007). In

the presence of organic nitrogen, Gln is taken up and

transformed to 2-oxoglutarate (OG) which enters the TCA

cycle; while under inorganic nitrogen OG has to be with-

drawn from the TCA cycle to supply carbon precursor chains

for the synthesis of Gln, Glu, Pro, and Arg. The adjustment

between the two conditions appears to be made by significant

reduction in mitochondrial NAD-ME and by significant

increase in PEP carboxylase flux (Junker et al., 2007).

Iyer et al. (2008) used 13C-MFA to study the effect of

temperature on protein and oil biosynthesis in developing
soybean cotyledons. This was motivated by various reports

that had indicated a significant response of developing

soybean to temperature and the ultimate objective of

understanding carbon regulation for improved protein and

oil production (Iyer et al., 2008). Their results suggest that

the capacity for flux through certain components of central

carbon metabolism can be influenced by temperature during

early stages of embryo development in planta.
Mutations that severely affect seed oil accumulation can

give insight into the regulation of central carbon metabo-

lism. In Arabidopsis, a regulatory mutant wrinkled1 (wri1-1;

At3g54320) and a double mutant in two isoforms of plastidic

pyruvate kinase (pkpb1pkpa; At5g52920 and At3g22960)

were studied by 13C-MFA of developing embryos (Lonien

and Schwender, 2009). Both mutations are characterized by

severely reduced seed oil content (Table 1) and accordingly
for both mutants the flux of plastidic pyruvate into FAS was

reduced. For both mutations, an increase of TCA cycle

activity was found, very pronounced in wri1-1. The effect on

relative contributions to the synthesis of plastidic pyruvate

differed between both mutants (Table 1). For the PKp mutant

there was no major change in relative fluxes. This means that

the reduction in PKp flux could not be compensated by the

above-described import of cytosolic pyruvate or plastidic
ME. However, in the wri1-1 mutant, the large reduction in

PKp flux was compensated in part by an increased import of

cytosolic pyruvate and by plastidic ME (Table 1). It is

unclear why this compensation is possible only for wri1-1 but

not for pkpb1pkpa. To explain this difference one hypothesis

can be brought forward considering that PEP, the substrate

of PK, is known to be a strong allosteric inhibitor of ATP-

dependent and pyrophosphate-dependent phosphofructoki-
nase in plants (Plaxton and Podesta, 2006). In wri1-1, a large

reduction in flux through PKp apparently is caused by

decreased enzyme capacity at multiple steps along the

glycolytic and lipid synthesis pathways (Lonien and

Schwender, 2009). In pkpb1pkpa it appears that a more

severe and targeted reduction of PKp has actually less effect

on flux through the reaction (Lonien and Schwender, 2009),

which might cause the concentration of PEP to rise, leading
to a pronounced allosteric feedback inhibition of upper

glycolysis, thus preventing compensatory flux via cytosolic

glycolysis towards pyruvate.

Flux analysis beyond the metabolic steady
state

Steady-state MFA is an extremely useful diagnostic tool set

for determining the in vivo metabolic rates of cell tissues and

simple organisms under metabolic steady-state conditions
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where metabolic fluxes and the pools through which they

flow are constant. Recent efforts have successfully expanded

the applicability of isotopic MFA to systems in which

metabolism is in steady state but not isotopic steady state

and therefore the analysis of endpoint labelling patterns is

impractical (Leighty and Antoniewicz, 2011; Young et al.

2011). In order to quantify the metabolic fluxes outside of

these situations, it is necessary to look beyond the scope
of MFA.

In plants there are many important metabolic processes

that are inherently non-steady-state. The most common of

these is the diurnal cycling of metabolism due to changes in

light conditions. The interactions of the day and night

metabolism of plant cells and the manner in which the cells

transition between the two states is a naturally occurring

and distinctly dynamic phenomenon of significant impor-
tance. This has been observed not only in carbon metabo-

lism, but also in nitrogen and other nutrients (Tcherkez and

Hodges, 2009; Gauthier et al., 2010). Another type of non-

steady-state metabolism of note is the response of plants

under conditions of nutrient deprivation (Miller et al.,

2010). Nutrient deprivation is an important situation in

agriculture (Schachtman and Shin, 2007). It is also

employed in eliciting specific product production from plant
and algal cell cultures of industrial relevance. A third class of

non-steady-state metabolism meriting investigation is response

to biotic or abiotic stresses. Stress responses are inherently

non-steady-state but play a ubiquitous role in protecting

plants from their environment (Bolwell et al., 2002). In cases

where product quality is tightly controlled, such as pharma-

ceutical protein production in plants, understanding these

irregular but significant influences to metabolism is necessary.
The analysis of non-steady-state metabolism requires

many of the same experimental and computational tools

that are utilized in the analysis of steady-state metabolism

in MFA. Isotopic labelling is necessary to estimate meta-

bolic fluxes, although this must be done as a function of

time and during transient changes it is also necessary to

measure metabolite concentrations in order to capture the

effects that changing pool size will have on the fluxes and
labelling dynamics. Of additional utility is coupling the

metabolic flux data with information from other ‘omics’

fields, such as transcriptomics and proteomics (Feng et al.,

2010; Matsuoka and Shimizu, 2010). A more complete

understanding of the impacts that the different levels of

regulation have becomes even more essential during tran-

sient periods because metabolites are expected to be at

concentrations where small changes will have a significant
impact, contrary to steady-state metabolism where most

small changes in concentrations are controlled to limit their

overall impact, thereby increasing the robustness of the

steady-state system’s stability (Gerosa and Sauer, 2011).

Ultimately, this information can be combined into a com-

prehensive, overarching kinetic model. Fully characterized

kinetic models are capable of handling non-steady-state

dynamics in metabolism and have been shown to properly
predict the effects of metabolic perturbations and new steady

states. Kinetic models have been used on multiple systems in

plants including photosynthesis (Tholen and Zhu, 2011),

secondary metabolism (Boatright et al., 2004; Rios-Estapa

et al., 2008; Colon et al., 2010), and amino acid metabolism

(Curien et al., 2009) and have even sought to include

compartmentation (Uys et al., 2007). While models incorpo-

rating transient metabolic effects would be relatively small at

first due to the difficulties in modelling plants’ inherent

complexity, the rapid advances which metabolic engineering
has seen in the past two decades indicate that this level of

modelling is well within reach.
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